-
Acharya (Attermeyer) PhD Fellowship
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Katrin Attermeyer
Bearbeitung des Forschungsvorhabens „Einfluss von Biodiversität auf die Zersetzung feinpartikulärer organischer Substanzen durch Mikroorganismen in Bächen.“
-
Methan-e-scape
Carbon Cycle and Microbial Ecology in fresh waters (CARBOCROBE)
Duration: 01.08.2024 - 31.07.2027
Funding Agency: FWF
Project-Leader: Katrin Attermeyer
Süßwasserökosysteme, zu denen Seen, Talsperren, Bäche und Flüsse gehören, sind für fast die Hälfte der globalen Methan (CH4)-Emissionen verantwortlich. In Anbetracht der hohen räumlichen und zeitlichen Variabilität der CH4- Emissionen sind jedoch Schätzungen der CH4- Emissionen aus Binnengewässern in die Atmosphäre und ihres Beitrags auf der Landschaftsebene eine große Quelle der Unsicherheit in globalen CH4-Budgets. Das Ziel des Projekts "Methan-e-scape" besteht darin, hochauflösende, kleinräumige Umweltdatensätze in Verbindung mit geomorphologischen Informationen innerhalb und über verschiedene Fließgewässerökosysteme hinweg parallel zu Messungen von CH4-Konzentrationen, Flüssen, Sedimentproduktion und Methanogenen zu entwickeln. Die Ergebnisse dieses Projekts werden unser Wissen über die Treiber von Prozessen im Zusammenhang mit der Methandynamik in Fließgewässern verbessern, die derzeitigen Konzepte weiterentwickeln und dazu beitragen, die Auswirkungen der prognostizierten Umwelt- und Klimaveränderungen auf das atmosphärische CH4 zu verstehen.
-
SCIBORG - The science literacy board game: a new tool for improving science literacy with informal youth education
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.04.2024 - 31.03.2025
Funding Agency: Bund (Ministerien)
Das Hauptziel des SCIBORG-Projekts besteht darin, die staatsbürgerliche Wissenschaftskompetenz junger Menschen und Jugendbetreuer durch die Entwicklung und Umsetzung eines innovativen Brettspiels zu verbessern. SCIBORG umfasst Mitgestaltung, Zugänglichkeit, Engagement und Inklusivität, um junge Menschen mit den Fähigkeiten und dem Wissen auszustatten, die sie benötigen um das komplexe Feld der Wissenschaft besser zu verstehen und effektiv zu gesellschaftspolitischen Diskussionen über aktuelle Themen wie den Klimawandel beizutragen.
-
Long-teRm Evolution of zooplankton resting metaBolic rate and pOlyunsaturated fatty acids conversion under waRming and eutrophicatioN: an eco-evolutionary approach
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.02.2024 - 31.01.2027
Project-Leader: Martin Kainz
Die Vorhersage der Reaktion von Süßwasserökosystemen auf den globalen Wandel ist von entscheidender Bedeutung für die Umsetzung von Bewirtschaftungsstrategien, die ihre Nachhaltigkeit und die daraus resultierenden Dienstleistungen für den Menschen (Fischerei, Trinkwasser, Freizeitaktivitäten) sicherstellen. Die derzeitigen Prognosemodelle berücksichtigen jedoch nicht die Entwicklung von Süßwasserorganismen als Reaktion auf Umweltfaktoren wie Temperatur und trophischen Status. Ziel des REBORN-Projekts ist es, die Entwicklung der wichtigsten Zooplanktonarten in Abhängigkeit von Temperatur und Nährstoffzufuhr zu bestimmen. Ein Hauptteil des Projekts wird sich auf die Cladocera der Gattung Daphnia konzentrieren, die Ruheeier produziert, die jahrzehntelang in Seesedimenten lebensfähig bleiben können. Durch die Entnahme von Daphnia-Ruheeiern aus verschiedenen Schichten von Sedimentkernen werden wir Individuen mit einem genetischen Hintergrund wiederbeleben, der die Populationen widerspiegelt, die in den beprobten Seen über die letzten Jahrzehnte vorhanden waren, um die langfristige Entwicklung der Reaktion der Populationen auf Umweltstressoren zu bewerten.
-
Garant 2024
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2024 - 31.12.2024
Funding Agency: Unternehmen
Project-Leader: Martin Kainz
Fütterung neuer Futtermischungen an Saiblinge, regelmäßige Messungen zootechnischer Leistungen und deren wissenschaftliche Auswertung stehen im Mittelpunkt des Projekts GARANT. Fördergeber: Garant – Tiernahrung GmbH.
-
DANUBIUS Austria - River observatory network in the UpperDanube catchment
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.10.2023 - 30.09.2027
Funding Agency: FFG
Flussnetze reagieren sehr empfindlich auf die Auswirkungen vielfältiger Belastungen auf globaler, regionaler und lokaler Ebene. Veränderungen in Flussnetzen beeinträchtigen nicht nur die Integrität und Funktionsfähigkeit dieser Ökosysteme, sondern auch die Bereitstellung wichtiger Ökosystemdienstleistungen und die Verfügbarkeit von Wasserressourcen, was weitreichende Folgen für unsere Gesellschaft hat. Ziel von DANUBIUS Austria ist es, ein Netzwerk von modernen Flussbeobachtungsstellen im Einzugsgebiet der oberen Donau aufzubauen, um langfristige, hochauflösende biogeochemische und biologische Daten zu erhalten. Diese Daten werden die Analyse der durch den globalen Wandel bedingten langfristigen Trends sowie der kurzfristigen Schwankungen in Oberflächengewässern und gekoppelten Oberflächen-Grundwasser-Systemen erleichtern. Die beiden Beobachtungsregionen von DANUBIUS Österreich sind das voralpine Flussnetz der Ybbs und der Donauhauptstrom mit seinen angrenzenden Auen im Nationalpark Donau-Auen. Die Forschungsinfrastruktur von DANUBIUS Austria wird als Supersite "Upper Danube Austria and pre-alpine network of tributaries" in die paneuropäische ESFRI-Forschungsinfrastruktur DANUBIUS-RI eingebettet und stärkt damit die Wettbewerbsfähigkeit Österreichs bei EU-Missionen (insbesondere zur Unterstützung des EU Green Deal) und internationalen Forschungskonsortien.
-
Pond landscapes of the Waldviertel - a globally unique model region for sustainability, climate-friendly habitats and health
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 29.06.2023 - 30.09.2025
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Martin Kainz
Ziel des Projekts “TeichFit“ ist es den Bezirk Gmünd mit seiner Teichlandschaft als Modellregion für Nachhaltigkeit, klimafitte Lebensräume und schließlich Gesundheit für Niederösterreich zu etablieren. TeichFit wird gesamtheitliche Nähr- und Schadstoffbudgets von Teichen erstellen, Teiche als Stabilisatoren der Biodiversität im und aus dem Wasser untersuchen und dabei mit Partnern und Schulen (Wissensvermittlung) arbeiten. Ferner wird TeichFit derzeitige Wasserbudgets (zeitlich und räumlich) von Fischteichen und deren Zu- und Abflüsse erstellen, die klimatische Entwicklung in den letzten Jahrzehnten mit besonderem Blick auf die Häufigkeit und Intensität von regionalen Niederschlags- und Temperaturextremen, Veränderungen in Wasserverfügbarkeit und Verdunstung, sowie Zukunftsprojektionen basierend auf gängigen Klimaszenarien analysieren und Zukunftsszenarien über Wasserverfügbarkeit in der Region (Klimatologie, Landwirtschaft) erstellen. Schließlich wird TeichFit Ernährungsempfehlungen über die Fischqualität aus den Waldviertler Teichen für die menschliche Gesundheit abgeben.
-
Restoration of wetland complexes as life supporting systems in the Danube basin
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.06.2023 - 31.05.2027
Funding Agency: EU
Project-Leader: Gabriele Weigelhofer
Wiederherstellung von Feuchtgebietskomplexen als lebenserhaltende Systeme im Einzugsgebiet der Donau Das Horizon Europe Projekt Restore4Life zielt darauf ab, ein Online-Entscheidungshilfesystem für die Wiederherstellung von Feuchtgebieten zu entwickeln, das groß angelegte ganzheitliche Aktivitäten zur Wiederherstellung von Feuchtgebieten im Donaubecken und darüber hinaus als Teil der EU-Mission "Wiederherstellung unserer Ozeane und Gewässer bis 2030" ermöglicht. Anhand von vier Umsetzungsstandorten und sechs Überwachungsstandorten wird das Projekt die erhebliche Verbesserung wichtiger Ökosystemleistungen aufzeigen, die sich aus einem umfassenden und interdisziplinären Ansatz zur Wiederherstellung von Süßwasser- und Küstenfeuchtgebieten im Donaueinzugsgebiet ergeben. Das Projekt wird außerdem die zahlreichen sozioökonomischen Synergien aufzeigen, die sich aus der Wiederherstellung von Feuchtgebieten ergeben und die Türen für nachhaltige Unternehmen und Investitionen öffnen. Restore4Life befähigt Bürger und Stakeholder, sich durch die Einrichtung von 'Stakeholder-Communities of Practice' aktiv an der Projektgestaltung zu beteiligen. Durch die Förderung der Zusammenarbeit zwischen ähnlichen Projekten in verschiedenen Stadien der Umsetzung, die Förderung von Bürgerwissenschaft, die Entwicklung thematischer mobiler Apps und die Nutzung mehrerer Kommunikationskanäle, einschließlich eines visuell fesselnden und interaktiven Informationsflusses, schafft das Projekt emotionale Verbindungen zu wassergeprägter Umwelt. Die BOKU koordiniert das Arbeitspaket 3, das der Umsetzung und dem Monitoring der Renaturierungsmaßnahmen gewidmet ist und beteiligt sich u.a. an der Etablierung von Citizen Science an den Umsetzungs- und Monitoringstandorten (Arbeitspaket 2). Besonderes Augenmerk liegt auf der Erprobung, Anpassung und Optimierung von Indikatoren für die Bewertung von Feuchtgebietsfunktionen und Ökosystemleistungen, die für Citizen Scientists leicht anwendbar und auf andere Regionen übertragbar sind.
-
Influence of xenobiotics and climatic change on essential fatty acid synthesis of microalgae and zooplankton in fishponds of Lower Austria
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.06.2023 - 31.03.2026
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Einfluss von Xenobiotika und klimatischen Veränderungen auf die Synthese essentieller Fettsäuren von Mikroalgen und Zooplankton in Fischteichen in Niederösterreich Mikroalgen sind die Grundlage für wichtige Nährstoffe in aquatischen Ökosystemen. Es ist bekannt, dass sie im Rahmen ihres Stoffwechsels Fettsäuren synthetisieren, die über Zooplankton auf Fische übertragen werden. Toxine, die z.B. durch die Landwirtschaft in aquatische Systeme eingebracht werden, können die Fettsäuresynthese von Mikroalgen beeinflussen. Dies hat wahrscheinlich Auswirkungen auf die gesamte Nahrungskette und damit auch auf den Menschen, der Fisch konsumiert. Darüber hinaus können Klimafaktoren wie Temperatur und Licht die Auswirkungen der Trophodynamik von Toxinen und die Art und Weise, wie Wasserorganismen mit ihnen umgehen können, beeinflussen. Bis heute ist wenig über diese Zusammenhänge und ihre Auswirkungen auf die Nahrungskette bekannt. Daher zielt dieses Projekt darauf ab, Faktoren zu analysieren, die die Fettsäuresynthese einzelner Teile aquatischer Ökosysteme und folglich die planktonische Nahrungskette von Mikroalgen bis hin zum Zooplankton (und Fischen) beeinflussen.
-
Fueling incredible journeys: stable isotope tracing of the origins and allocation of essential and non- essential fatty acids powering continental migration of the Monarch butterfly
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.06.2023 - 30.04.2026
Funding Agency: FWF
Diese Studie befasst sich mit den transkontinentalen Wanderungen der Monarchfalter und insbesondere damit, wie diese Insekten Energie für die Fettsäuresynthese gewinnen, die für ihre Fortbewegung und ihre physiologischen Bedürfnisse entscheidend ist. Diese Schmetterlinge werden zunehmend durch menschliche Aktivitäten wie den Einsatz von Pestiziden, Landnutzungsänderungen und den Klimawandel beeinträchtigt. Die Forschung zielt darauf ab, zu verstehen, wo entlang ihrer Wanderroute die Schmetterlinge Energie aus ihrer Nahrung für die Fettsäuresynthese beziehen. Bislang gab es keine Methoden, um die Herkunft der Fette in Insekten zu ermitteln. Im Rahmen der Studie wird die Deuterium- und Kohlenstoff-13- Isotopenanalyse eingesetzt, um die Herkunft der essenziellen und nicht essenziellen Fettsäuren in verschiedenen Stadien der Monarchfalter und ihrer Wirtspflanzen zu bestimmen. Die Stabilisotopenanalyse wird an Proben von in Gefangenschaft lebenden und wilden Monarchen und ihren Wirtspflanzen durchgeführt. Dies wird dazu beitragen, kontinentale "Quellenkarten" zu erstellen, um den Ursprung und die Verwendung von Fettsäuren in wandernden und überwinternden Schmetterlingen aufzuzeigen. Bei diesem Ansatz werden neue biochemische Analyseverfahren eingesetzt, um Aspekte der Migration von Tieren zu erforschen, die mit herkömmlichen Methoden nicht zugänglich sind. Die Ergebnisse werden dazu beitragen, wandernde Insekten und andere Arten wie Vögel zu verstehen und zu erhalten. Das Projekt ist eine Zusammenarbeit zwischen Österreich, Kanada, Mexiko und den USA.
-
Life full of water - developing basic principles on the topic of water for nature parks in Austria
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.04.2023 - 31.05.2024
Funding Agency: Private (Stiftungen, Vereine etc.)
Project-Leader: Gabriele Weigelhofer
„Fachliche Begleitung zur Sensibilisierung für die Bedeutung von Wasser“ Förderung des Wissens- und Erfahrungsaustausches im Naturpark-Netzwerk sowie die Erstellung von Kommunikationsmitteln und praxisorientierten Unterlagen Im Rahmen des Vorhabens „Landschaften voller Wasser – die österreichweite Initiative zum Schutz von Wasser als Ressource und Lebensraum in den Naturparken“ des Verbands der Naturparke Österreichs
-
Interdisciplinary network for science education (INSE) Lower Austria - joint efforts to sustainably raise scientific literacy
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.01.2023 - 01.01.2026
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Eva Feldbacher
Die FTI Partnerschaft „Interdisziplinäres Netzwerk für Wissenschaftsbildung Niederösterreich – gemeinsam das Verständnis für Wissenschaft steigern“ (INSE) zielt darauf ab, (i) das Verständnis von Jugendlichen und der Öffentlichkeit für Wissenschaft zu steigern, indem die Arbeitsweise verschiedener Wissenschaftsdisziplinen erklärt und erlebbar gemacht wird, (ii) das Interesse an Wissenschaft durch innovative Formen der Wissenschaftskommunikation zu steigern und (iii) den Glauben an die Bedeutung wissenschaftlicher Forschung zur Bewältigung bestehender und zukünftiger gesellschaftlicher und ökologischer Herausforderungen zu stärken. Die nachhaltige Förderung von Wissenschaftsverständnis verlangt nach einem inter- und transdisziplinären Netzwerk, um der Mehrdimensionalität der Wissenschaft gerecht zu werden. INSE initiiert und fördert daher die enge Zusammenarbeit eines Kernteams aus (1) WissenschaftlerInnen aus naturwissenschaftlichen, pädagogischen und sozialen Disziplinen (WasserCluster Lunz, Austrian Educational Competence Center Biology, Pädagogische Hochschule Nö), (2) Partnerschulen (BORG Wr. Neustadt, VS und MS Lunz), (3) dem Haus der Wildnis Lunz (Lernort für außerschulische Bildung) und (4) der Nö Bildungsregion 3. Im Rahmen einer Pilotstudie werden innovative Ansätze für den Wissenschaftsunterricht entwickelt und getestet sowie Optionen für eine Implementierung in schulische Lehrpläne erarbeitet. Zudem werden niederschwellige Angebote für die Öffentlichkeit entwickelt. Eine wissenschaftliche Begleitstudie evaluiert das Pilotprojekt. Durch die Einbindung von weiteren Partnern aus dem In- und Ausland (zusätzliche Wissenschaftsdisziplinen, Partnerschulen, bestehende Bildungskommunikations-Netzwerke) im Rahmen der FTI Partnerschaft und durch die Entwicklung von zwei (inter-)nationalen Projekten auf Basis der Erkenntnisse aus dem Pilotprojekt wird das Netzwerk INSE weiterentwickelt.
-
RESTORE4Cs - MODELLING RESTORATION OF WETLANDS FOR CARBON PATHWAYS, CLIMATE CHANGE MITIGATION AND ADAPTATION, ECOSYSTEM SERVICES, AND BIODIVERSITY, CO-BENEFITS
Carbon Cycle and Microbial Ecology in fresh waters (CARBOCROBE)
Duration: 01.01.2023 - 31.12.2025
Funding Agency: EU
Project-Leader: Katrin Attermeyer
-
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.01.2023 - 01.02.2024
Funding Agency: Bund (Ministerien)
-
Effects of microplastics on the biomass, community composition, and functioning of aquatic biofilms
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.01.2023 - 31.12.2024
Funding Agency: Bund (Ministerien)
Die weit verbreitete Verwendung von Kunststoffen im Leben des Menschen führt zu einer Anhäufung großer Mengen von Mikroplastik in der Umwelt. Mikroplastik kann sich in Flusssedimenten ansammeln, wo es einen einzigartigen Lebensraum für spezifische mikrobielle Gemeinschaften bietet, die sich von den umgebenden Wasser- und Sedimentgemeinschaften unterscheiden. Das Vorkommen von Mikroplastik in Verbindung mit den nachteiligen Auswirkungen von Mikroplastik auf die Süßwasserbiota kann potenzielle Auswirkungen auf lokale und globale biogeochemische Kreisläufe und Ökosystemprozesse in Süßgewässern haben. Unser Projekt zielt darauf ab, die Auswirkungen von Mikroplastik auf die mikrobielle Biomasse, Zusammensetzung und Aktivität in hyporheischen Sedimenten zu untersuchen. Wir werden Veränderungen in der Biofilm-Gemeinschaft sowie im Nährstoff- und organischen Stoffkreislauf in hyporheischen Sedimenten aufgrund der Exposition gegenüber Mikroplastik in einem Laborsäulenexperiment untersuchen.
-
Diversity of Aquatic Insects (QUIVER)
Duration: 31.12.2022 - 31.12.2025
Funding Agency: Bund (Ministerien)
Kooperation mit Albanien
-
Drought Impact on Remobilization of water polluTants from river sediments (DIRT)
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.11.2022 - 01.11.2025
Funding Agency: Bund (Ministerien)
Project-Leader: Gabriele Weigelhofer
Dürrezeiten sind hydrologische Extremereignisse, die den ökologischen Zustand von Gewässern und deren Funktionsfähigkeit massiv beeinträchtigen können. Niedrigwasser und erhöhte Wassertemperaturen führen zu einer Kaskade an hydrochemi-schen Prozessen, die die Wasserqualität verschlechtern und wichtige Ökosystemleistungen, wie das Angebot an sauberem Wasser, den Nährstoffrückhalt und die Biodiversität, reduzieren. Dürrezeiten sind besonders im Osten Österreichs von Be-deutung, wo der Zustand der Fließgewässer durch intensive Landwirtschaft, ausgedehnte Niedrigwasserperioden und eine zunehmende Erwärmung besonders stark bedroht ist. Unter derartigen Bedingungen kann es zu einer Rücklösung von Stoffen aus den Sedimenten kommen, die in weiterer Folge die Gewässer eutrophieren (also quasi „düngen“) und zu einer Sauerstoff-zehrung führen können. Das Projekt DIRT (11/2022-10/2025; Österreichischer Klima- und Energiefond) zielt darauf ab, die Bedeutung der Mobilisierung von Nährstoffen im Gewässer im Vergleich zu Einträgen von außen abzuschätzen. Auf der Basis von Laborexperimenten, die eine Klimaerwärmung simulieren, und einem gezielten Wasserqualitätsmonitoring entwickeln wir statistische Raum-Zeit-Modelle, die uns erlauben, das Remobilisierungspotential von Nährstoffen entlang von Flusssystemen zu bestimmen. Anhand unserer Versuche können wir feststellen, welche Sedimente ein besonders hohe Mobilisierungspotential bei Erwärmung aufweisen.
-
HydroEcol - Bewertung der d2H-Werte von nicht austauschbarem Wasserstoff in organischen Referenzmaterialien: Auf dem Weg zu analytisch robusten Verfahren zur Gewährleistung vergleichbarer Isotopendaten für die aquatische und terrestrische Ökologie, die Umweltforensik und die Authentizität von Lebensmitteln
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.11.2022 - 01.11.2024
Funding Agency: FWF
Das Element Wasserstoff (H) und seine stabilen Isotope (Protium:1H und Deuterium: 2H) machen etwa 6-10 % der Masse der organischen Materialien der Erde wie Pflanzen, Wasser- und Landtiere aus. Der 2H-Gehalt ist eng mit den Niederschlägen verbunden, die dort fallen, wo die Pflanze oder das Tier wächst, und er variiert vorhersehbar und räumlich auf der ganzen Welt. Daher sind Wissenschaftler sehr daran interessiert, den Deuteriumgehalt als natürlichen Tracer zu nutzen, um die Herkunft von Pflanzen, Tieren und Lebensmitteln zu ermitteln und Umweltverbrechen wie den Handel mit Tierteilen aufzuklären. Da die Deuteriummenge in Umweltproben unglaublich gering ist (<150 ± 50 Teile pro Million), ist es schwierig, sie mit fortschrittlichen Techniken wie der Isotopenverhältnis-Massenspektrometrie zu messen. Außerdem sind bis zu 20 % des Wasserstoffs austauschbar, was bedeutet, dass Dämpfe in der Laborluft das Deuteriumsignal der Probe während der Handhabung schnell verunreinigen können. Da das Problem des Isotopenaustauschs jedoch weitgehend unerkannt ist, können die meisten Laboratorien ihre H-Isotopen-Ergebnisse nicht gegenseitig reproduzieren, was ein großes Hindernis für den erfolgreichen Einsatz von H-Isotopen in Umweltanwendungen darstellt. Um sicherzustellen, dass die Laboratorien genaue und vergleichbare Deuteriumanalysen durchführen, werden dringend neue organische Wasserstoffisotopen-Referenzmaterialien benötigt. In jüngster Zeit wurden viele neue organische H-Referenzmaterialien (z. B. Holz, Keratin, Haare, Baumwolle, Mehl, Honig, Aminosäuren, Kollagen usw.) hergestellt, und ein erster Schritt besteht darin, sicherzustellen, dass die von ihnen erzeugten H-Isotopendaten rückverfolgbar und zwischen internationalen Labors vergleichbar sind. Dieses Projekt zielt darauf ab, reproduzierbare Analyseverfahren zur Bestimmung des 2H-Gehalts dieser neuen organischen Referenzmaterialien zu etablieren und so zu ihrer breiten Übernahme durch die weltweite wissenschaftliche Gemeinschaft zu führen und die Wasserstoffisotopen-Biogeochemie in die Lage zu versetzen, Pflanzen und Tiere zu verfolgen und die Wissenschaft der aquatischen und terrestrischen Ökologie, der Paläoökologie, der Umweltkriminalität und der Rückverfolgbarkeit von Lebensmitteln voranzubringen. Dieses Projekt ist ein internationales Unterfangen, an dem wissenschaftliche Partner aus Deutschland, Belgien, Kanada, Italien und den USA beteiligt sind.
-
FuturAQUA, FTI - Infrastructure 2021: environment, climate and resources
Duration: 27.10.2022 - 27.10.2032
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Robert Ptacnik
Alle Arbeitsgruppen am WasserCluster Lunz sind bei dem gemeinsamen Projekt FTI - Infrastruktur 2021 zum Thema Umwelt, Klima und Ressourcen beteiligt. Die Gesellschaft für Forschungsförderung Niederösterreich m.b. H. ist der Fördergeber des neuen maximal 10 Jahre dauernden Projekts.
-
4FatQs -Die Bedeutung von Omega-3-Fettsäuren für die Entwicklung kognitiver Fähigkeiten bei Wildfischen
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.10.2022 - 01.10.2025
Funding Agency: FWF
Project-Leader: Libor Závorka
The aim of the project is to use the framework of Tinbergen’s four essential questions to understand the mechanism through which dietary intake and internal synthesis n-3 LC-PUFA affects biochemical and cellular quality of brain and cognitive traits of brown trout. The project puts especially strong emphasis on ecologically relevant context of the research. Therefore, the necessary laboratory and experimental work will be accompanied by extensive sampling of wild populations of brown trout and assessment of behaviour and fitness of focal fish in their natural river environment (e.g., by using radio telemetry and mark-recapture study design). The main supervisor will be Dr. Libor Závorka from WasserCluster Lunz and co-supervisors will be Dr. Martin Kainz (WasserCluster Lunz), Dr. Pavel Nemec (Charles Univesity in Prague), and Prof. Shaun Killen (University of Glasgow)
-
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.04.2022 - 31.03.2023
Project-Leader: Martin Kainz
-
Yegon (Vitecek) PhD Fellowship - The Poop Loop - Erforschung der Beziehungen zwischen Biodiversität und Ökosystemen bei der Zersetzung von Laubstreu in Fließgewässern
Duration: 01.04.2022 - 27.01.2025
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
The Poop Loop - Exploring biodiversity ecosystems functioning relationships of leaf litterdecomposition in streams Freshwater ecosystems account for 0.3% of the planet's freshwater but they are the habitat for 9% of all described species and 35% of vertebrate species. The levels of freshwater biodiversity loss are alarming, doubling those found in terrestrialor marine ecosystems. Mediterranean climate regions are considered global hotspots of biodiversity, also for freshwater organisms. Rivers in these regions (med-rivers) are unique ecosystems because of their predictable winterflooding and summer drought regimes. They support many species adapted to bothfloods and droughts, and their high levels of freshwater biodiversity areexplained by past historical events and current environmental heterogeneity. At the same time, Med-rivers have been affected for centuries, in some casesmillennia, by multiple human activities that increasingly threaten their biodiversity. These threats include changes in land use, nutrient loads, heavymetal concentrations, salinity, water withdrawals, invasive species and, morerecently, xenobiotics or emerging organic pollutants. In addition, future climate change scenarios predict increases in drought conditions and in the occurrence of extreme events, such as floods, heat waves, and wildfires. The diversity of aquatic organisms is declining more rapidly in med-rivers than inrivers anywhere else in the world and, for some taxonomic groups, Mediterranean regions have more introduced than native species. Freshwater biodiversity conservationin med-rivers requires innovative approaches to account for both natural andhuman disturbances. Current protection figures, including the Natura2000network, do not appear to be very efficient in protecting freshwater biodiversity in med-rivers, so it is necessary to establish conservation criteria adapted to the characteristics of these ecosystems.
-
Aquatic lipid and ecotoxicology research group (LIPTOX)
Funding Agency: EU
Project-Leader: Martin Kainz
Interact Transnational Access has been granted Transnational Access to Kilpisjärvi Biological Station (Finland) and NIBIO Svanhovd Research Station (Norway).
-
Garant 2022
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2022 - 31.12.2022
Funding Agency: Unternehmen
Project-Leader: Martin Kainz
Feeding of new food compositions to chars, constant measurement of zootechnical achievments and the scientific evaluation of this are in the focus of the project GARANT. Funding: Garant – Tiernahrung GmbH.
-
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2022 - 31.12.2022
Funding Agency: Sonstige
Project-Leader: Martin Kainz
-
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.10.2021 - 01.05.2022
Funding Agency: Bund (Ministerien)
Project-Leader: Gabriele Weigelhofer
An drei Messstellen entlang der Ybbs werden bei Niedrigwasser wöchentlich und bei Hochwasser häufiger Wasserproben entnommen und auf Nähr- und Schadstoffe untersucht.
-
CrucianCarp - Analysis of food competition between common carp and crucian carp across fish ponds with different farming intensity
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.04.2021 - 31.12.2022
Funding Agency: Bund (Ministerien)
Project-Leader: Libor Závorka
The Cyprinidae is the largest family of freshwater fish with roughly 2500 species. This fish family includes species of great human interest - cultured carp forms, koi carps, colour goldfishes, Prussian carps, veil-tail goldfish, and many others. The status of Cyprinid fish varied around the world from nationally important fish species in Asia, through the farm fish and protected species in Europe to highly invasive species in North America and Australia. Our project will focus on the most common species in breeding aquaculture of Europe - Cyprinus carpio (common carp) and non-native species of the genus Carassius (European crucian carps). The project aims will lead to better knowledge about species food competitions in the fishponds with different intensity of farming. This bilateral cooperation includes a pilot study of stable isotope analysis in Slovak river basins. Output data will apply to the more effective management of aquaculture, invasive cyprinids management as well as surrounding aquatic ecosystems management.
-
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.04.2021 - 01.04.2024
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Gabriele Weigelhofer
Das Projekt zielt darauf ab, die Auswirkungen von partikulärem organischem Kohlenstoff auf die mikrobielle Aufnahme von Nährstoffen und auf den Fließgewässer-Stoffwechsel von nährstoffbelasteten Fließgewässern in Agrarlandschaften durch die Kombination eines kleinmaßstäblichen Labor- und eines großmaßstäblichen Feldexperiments zu analysieren. Wir werden die Auswirkungen von partikulärem organischem Material auf die Aufnahme von reaktivem anorganischem Stickstoff und Phosphor durch mikrobielle Gemeinschaften im Rahmen eines Laborexperiments mit Hilfe von stabilen Isotopen untersuchen. Außerdem werden wir ein Feldexperiment durchführen, in dem wir die Auswirkungen von OC-Bioreaktoren auf die langfristige Nährstoffbelastung von Fließgewässern untersuchen. Wir werden die Bedingungen ermitteln, unter denen OC-Bioreaktoren ineffizient werden, sowie negative Nebeneffekte, die zu einer möglichen Verschlechterung des ökologischen Zustands der Fließgewässer führen.
-
RIMECO - Riverine vertebrate metacommunities using eDNA
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.01.2021 - 31.12.2025
Funding Agency: FWF
Project-Leader: Thomas Hein
One of the most important advances in community ecology is that biodiversity patterns are not only influenced by local scale determinants, but by dispersal from the regional species pool. While former metacommunity studies are temporal snapshots, more recently, community ecology is emphasizing the importance of dynamic community organization. Therefore, we focus on the importance of temporal changes in dispersal rates and environmental conditions for metacommunity organization and diversity using a highly dynamic, pulsed and interlinked landscape as model system – river floodplains. Our study organisms, fish and amphibians, depend largely on the dynamics of hydrologic conditions in the floodplain environment. We expect a large range of metacommunity organization paradigms. Preliminary analysis proves the presence of a large array of different habitats expanding the gradient of hydrological pulsing, habitat connectivity and temporal variability. Depending on the hydrological pulsing level, we expect a temporal shift from species sorting (environmental filtering and biotic interactions) to a mass effect driven community as well as dispersal limitation during long periods of low flow dependent on the level of connectivity of the different water bodies. Bias in species detection can alter the analysis of community structure and its turnover. Such limitations with traditional sampling methods for fish and amphibian are well known. To overcome this problem, we implement eDNA metabarcoding as sampling technique for metacommunities. In a first step, we will compare eDNA approach with traditional sampling methods. In a second step, we will do a two years temporal study to test for the sensibility of the fish and amphibian metacommunities to hydrological pulsing.
-
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2021 - 01.03.2022
Funding Agency: Unternehmen
Project-Leader: Martin Kainz
Feeding of new food compositions to chars, constant measurement of zootechnical achievments and the scientific evaluation of this are in the focus of the project GARANT. Funding: Garant – Tiernahrung GmbH
-
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.11.2020 - 30.01.2023
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Gabriele Weigelhofer
Programmkoordinierung, Organisation der Projekttage und Workshop Angebote für Schulen in Zusammenarbeit mit den Mitarbeitenden des Wildnisgebiets Dürrenstein werden von Gabriele Weigelhofer im Haus der Wildnis übernommen.
-
Phytoplankton-parasites, the "dark matter" of pelagic ecosystems
Duration: 01.10.2020 - 30.09.2022
Project-Leader: Silke Van den Wyngaert
Phytoplankton form the base of aquatic food webs and play a key role in the global carbon cycle. High throughput sequencing has revealed a high diversity of putative zoosporic parasites, associated with phytoplankton in pelagic ecosystems. However, their inconspicuous nature makes them difficult to identify and even harder to quantify. These constraints currently limit assessment of ecological interactions and importance of zoosporic parasites in aquatic ecosystems. Hence, it remains an open question to what extent different zoosporic parasites drive phytoplankton bloom dynamics and contribute to aquatic food web functioning. This project aims to overcome these limitations by using a unique combination of identification and quantitative methods applied to multiple zoosporic parasite taxa. I will use a multiphasic approach, combining classical cultivation and state of the art DNA-based methods to identify and quantify the zoosporic parasite community associated with phytoplankton blooms in the oligotrophic lake Lunz. Culture independent methods such as single cell analysis have the advantage that information is retained on the association and molecular identity of both host and parasite. In combination with environmental metabarcoding, it will allow the analysis of host specificity and distribution patterns of phytoplankton-parasite associations. Moreover, the application of taxa specific oligonucleotide CARD-FISH probes, enables microscopic visualization of ecological interactions (e.g. host-parasite, prey-predator interactions) and provides a more accurate quantification of specific cells. Laboratory grazing experiments will be conducted to identify the most efficient grazers of parasite zoospores in lake ecosystems. Moreover, I will compare nutritional quantity and quality between different zoosporic parasite taxa by analyzing their lipid content and fatty acid composition. Lake Lunz will be the main study system for this project, however, methods will be applicable to other systems. In this sense, the project will stimulate new research efforts on zoosporic parasites and put WasserCluster Lunz at the forefront of this new trophic research approach, which may lead to major revisions of generally accepted concepts in phytoplankton bloom dynamics, trophic processes, and nutrient cycling in aquatic ecosystems.
-
RemoLake - Remoteness and size as determinants of lake ecosystem stability
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.08.2020 - 31.07.2023
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Anna-Maria Gschwandner
Functioning and provision of ecosystem services depends on integrity of ecological communities. This implies a match between environmental conditions and composition of the assemblage inhabiting a habitat. Ongoing global change poses a challenge to virtually all communities, as we are facing a general baseline shift across the globe with unknown consequences for ecosystems and their communities. Among the regular habitat types, freshwater ecosystems are considered particularly sensitive due to limited connectivity and overall limited area covered by these systems. The capability of communities to adapt to changing conditions is known as environmental tracking and depends on species turnover, i.e. compositional replacement by better adapted species (or genotypes) from the regional species pool. The connectivity of a habitat to a diverse species pool is a prerequisite for successful environmental tracking, and limited connectivity therefore constrains environmental tracking. In the proposed study, I will study environmental tracking in lake plankton communities, and will analyse how environmental tracking and ecosystem stability are linked to the connectivity of a given lake. My approach will involve comparative analysis of multiple lake time series, with a particular focus on the recent development of Lake Lunz in Lower Austria. Lake Lunz represents one of the most remote lakes in terms of connectivity to other lakes in Austria and thus is highly suitable for pursuing this research. The output of my project will illuminate how susceptibility of lake ecosystems to global change and other anthropogenic stressors can be predicted from a lake’s position in the landscape.
-
Impacts/effects of multiple stressors on freshwater biodiversity and ecosystem functioning
Diversity of Aquatic Insects (QUIVER)
Duration: 01.06.2020 - 31.05.2023
Funding Agency: Sonstige
Auswirkungen von Mehrfachstressoren auf die biologische Vielfalt von Süßwasser und das Funktionieren von Ökosystemen MUSE zielt darauf ab, die kombinierten Auswirkungen neuer Schadstoffe und des Klimawandels auf benthische wirbellose Lebensgemeinschaften und die von ihnen vermittelten aquatisch-terrestrischen Verbindungen aufzudecken. In diesem Zusammenhang wurden im WasserCluster Lunz Experimente durchgeführt, um zu testen, wie sich gereinigte Abwässer aus einem kleinen Dorf auf experimentelle Lebensgemeinschaften auswirken würden.
-
FWF MINT - Mixotrophy: Now and Then
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.05.2020 - 30.04.2023
Funding Agency: FWF
Project-Leader: Robert Fischer
In last years and decades it has become clear that mixotrophic microalgae – algae that engage in photosynthesis, but also prey on bacteria or other algae, respectively – can have a high ecological importance in lakes and oceans. This challenges a central paradigm in plankton ecology, since the traditional dichotomy between phytoplankton (plant-like plankton; producers) and zooplankton (animal-like plankton; consumers) appears to be outdated. However, the apparent prevalence of mixotrophic protists in the field contrasts our current understanding about their impact on microbial food web dynamics and carbon and nutrient cycles. Moreover, changes to aquatic environments due to global climate change, such as rising water temperatures and increasing input of terrigenous carbon, are likely to promote the growth of mixotrophic plankton. Hence, it appears timely to investigate mixotrophy not only under current conditions, but also under future conditions as projected by climate models, in order to reliably assess future consequences for aquatic ecosystems. The proposed inter-disciplinary research project aims at getting a mechanistic understanding regarding the functional role of mixotrophs in microbial food webs. Understanding the metabolism of mixotrophs is key to understand flows of energy and carbon at the base of aquatic food webs. Specifically the following research hypotheses will be addressed: H1: Dietary sources of carbon (inorganic vs organic) in mixotrophs differ depending on their respective mode of nutrition, some require light for growth, others not. H2: Mixotrophs “lock” bacterial carbon in the microbial food web, since they do not use it for growth. H3: Inputs of terrigenous carbon may be beneficial only for mixotrophs which don’t need light for growth, depending on the relative effects on bacterial activity versus light availability. H4: Climate change promotes conditions favorable for mixotrophs and pushes them more towards being consumers. In lab experiments, key traits of different mixotrophs will be identified and the effect of mixotrophs on microbial food webs will be investigated. In the experiments temperature and the input of carbon will be manipulated. Derived data will be used to validate and enhance models on microbial food web and associated carbon and nutrient cycles. The project has clear interdisciplinary aspects, as it elegantly combines plankton ecology, biochemistry, trait-based modelling and global change research.
-
AQUACOSM-plus
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.04.2020 - 31.03.2024
Funding Agency: EU
Project-Leader: Robert Ptacnik
-
RIBUST - Gewässerrandstreifen
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.03.2020 - 28.02.2024
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Gabriele Weigelhofer
Almost half of the land area in Lower Austria is used intensively for agriculture, which leads to an increased input of phosphorus and nitrogen into nearby streams. These nutrients are deposited in the sediments, which can lead to over-fertilization (eutrophication) of the water. In addition, the entry of waste water and fertilizers supports the proliferation of fecal pathogens in sediments. The higher water temperatures and lower water levels to be expected due to climate change can increase these problems. Riparian water strips and shore wood are a well-known measures that protect against the entry of nutrients and pollutants and improve the self-cleaning power of a water body. The project RIparian BUffer STrips (Gewässerrandstreifen) is being implemented by the BIGER working group in cooperation with the BAW Petzenkirchen, the Karl Landsteiner University and the BOKU Tulln. Field tests, soil analyzes and flume experiments under controlled laboratory conditions are planned to investigate the potential of riparian water strips under various environmental conditions to reduce pollution in water. These investigations are necessary to ensure the efficient and sustainable use of riparian water strips and wood banks and to protect water bodies of Lower Austria under future climatic conditions and agricultural use.
-
Garant 2020
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2020 - 31.12.2020
Funding Agency: Unternehmen
Project-Leader: Martin Kainz
Feeding of new food compositions to chars, constant measurement of zootechnical achievments and the scientific evaluation of this are in the focus of the project GARANT. Funding: Garant – Tiernahrung GmbH.
-
SalmoPUFA
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.11.2019 - 31.10.2021
Funding Agency: FWF
Project-Leader: Libor Závorka
-
i-CONN - Interdisciplinary connectivity: Understanding and managing complex systems using connectivity science
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.10.2019 - 30.09.2023
Project-Leader: Thomas Hein
The i-CONN network brings together an exceptionally strong team of world-leading experts in connectivity science from seven disciplines, in 13 partner institutions, both academic and industrial, from Austria, Cyprus, the Czech Republic, France, Germany, Norway, UK and USA, with the specific aim of the network is to achieve cross-fertilization of ideas to bring the forefront best aspects of connectivity research across disciplines into a common framework. These advances will enable a new generation of connectivity scientists to overcome existing limitations of connectivity science produce transdisciplinary insights into the behaviour of complex systems. The proposed innovative science in a range of diverse disciplines (Astrophysics, Computer Science, Ecology, Geomorphology, Hydrology, Neuroscience, Systems Biology, and Social Science) will underpin breakthrough developments in connectivity research and measurement techniques that will benefit not only these disciplines, but also others that are using connectivity science as a means of understanding the behaviour of complex systems. To our knowledge, there are no other attempts to bring together the connectivity thinking that has evolved within disparate disciplines. The consortium of multiple academic and private, public and NGO groups will deliver top, international-level interdisciplinary training to 15 Early-Stage Researchers (ESRs), offering them an extended programme of multinational exchanges and secondments. The ESRs will perform transdisciplinary research and receive interdisciplinary training through six interconnected work packages that collectively address knowledge gaps related to connectivity science: theory; methods and application. Filling these gaps will not only result in major innovative insights for understanding and managing complex systems, but critically will develop a suite of standards, tools and approaches that can be applied more generally. To address these challenges, it is crucial to train a new generation of ESRs in a programme such as this ITN where fundamental and applied research are effectively integrated via collaborative research, doctoral secondments and theoretical/applied courses – in other words, one in which the aforementioned disciplines Astrophysicists, Computer Science, Ecologists, Geomorphologists, Hydrologists, Neuroscientists, Systems Biologists, and Social Scientists can contribute to a well-defined problem: how we can use and develop connectivity-related tools to understand complex systems
-
ClimSchool21 - Können online Lernformate und Citizen Science Ansätze Klimaforschung vermitteln und klimafreundliches Verhalten bei Kindern und Jugendlichen fördern?
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.09.2019 - 30.06.2020
Funding Agency: Sonstige
Project-Leader: Eva Feldbacher
There is still a noticeable gap between knowledge about climate change and climate-friendly behavior (value – action gap). Innovative educational concepts can promote climate-adapted behavior among the young population group by presenting basic knowledge about climate change in a way that suits the target group, encourages their curiosity and motivates them to act in a climate-friendly manner. Education represents a starting point in order to "move from knowledge to action" and to achieve a transformation in the behavior of our society. Important components of innovative educational concepts are online media formats as these are favored by young people. Together with school students and teachers we test a selection of popular online (learning) formats (e.g. YouTube videos, online quizzes) in comparison to a Citizen Science approach. With the help of feedback questionnaires we examine which formats are suitable for communicating research results in an attractive way and, in particular, for promoting climate-friendly behavior. We especially want to find out whether the active involvement of young people into research using a Citizen Science approach can achieve more sustainable results than purely passive learning concepts.
-
Vibrio - Neue Ansätze zur Quantifizierung und Vorhersage toxigener und nicht toxigener Vibrio cholerae Bakterien in Badegewässern
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.05.2019 - 31.12.2021
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Gabriele Weigelhofer
-
Garant 2019
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.04.2019 - 31.12.2019
Funding Agency: Unternehmen
Project-Leader: Martin Kainz
-
DRYHYP - Effects of drying and re-wetting on nutrient uptake in the hyporheic zone
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.04.2019 - 31.12.2022
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Matthias Pucher
Droughts and water abstraction have increased over the past thirty years in Austria. Both can cause perennial streams to become intermittent. The research objectives of this PhD thesis are to investigate the influences of drying and re-wetting on the hyporheic uptake and retention of nutrients and dissolved organic matter via mesocosm experiments and stream sampling.
-
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.01.2019 - 01.08.2022
Funding Agency: EU
Project-Leader: Robert Ptacnik
-
FWF AQUATERR: Transfer of essential lipids from aquatic to terrestrial ecosystems
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2019 - 31.12.2021
Funding Agency: FWF
Project-Leader: Martin Kainz
To date, aquatic ecosystem research is strongly restricted to investigations in water bodies, such as lakes and rivers. Thus, the importance of water organisms for terrestrial ecosystems remains less clear. Cross-ecosystem fluxes of organic matter can crucially influence the productivity of adjacent habitats. For example, emerging aquatic insects provide an important pathway by which freshwater-derived organic matter can enter terrestrial food webs. Effects of reciprocal resource subsidies on adjacent food web processes depend on the quantity of the subsidy; if and how qualitative differences in resource subsidies can influence adjacent food web processes has not been studied yet. The objective of this project is to evaluate the transfer of essential and potentially limiting biochemical nutrients, i.e. polyunsaturated fatty acids (PUFA), from freshwater to terrestrial systems via emerging insects and to assess the significance of freshwater-derived PUFA for terrestrial invertebrate consumers. Emergence traps will be installed in different lentic and lotic ecosystems (small lakes and streams) to assess habitat-specific PUFA fluxes. Pond experiments with stable isotope-labelled substrates will be used to assess PUFA export via emerging insects and distribution of aquatic PUFA in adjacent terrestrial ecosystems and invertebrate consumers. Laboratory feeding experiments will be conducted with riparian invertebrate predators (i.e. spiders), aquatic and terrestrial insect prey and PUFA-manipulated food to test whether aquatic insects are preferentially consumed and support the growth of riparian predators more efficiently than terrestrial insect prey. This approach will provide novel insight into the potential role of essential nutrients in mediating cross-ecosystem effects.
-
Effectiveness of small natural water retention measures at catchment scale - a combined modelling and experimental approach
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.07.2018 - 30.06.2021
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Damiano Baldan
Natural Small Water Retention Measures (NSWRMs) are receiving attention in EU policies because of their ability to address land use related issues (e.g. nutrient pollution from non-point sources and landscape erosion control, habitat improvement), providing at the same time multiple ecosystem services. A wide literature exists on the ability of NSWRMs to improve water quantity and quality, ranging from field scale measurements at the single intervention scale (efficiency) to catchment scale modeling for net effectiveness estimation, targeting and siting optimization. However, upscale to catchment is performed with an end-of-basin approach, since fluxes (water, sediment, nutrient) are investigated only at the outlet, thus lacking in resolution when describing the stream habitat scale. Moreover, few is known on the effectiveness of in-stream interventions such as small floodplains restoration on the river conditions. The aim of the project is to study the effectiveness of NSWRMs at the catchment scale and at the stream scale with a multiple ecosystem services perspective. NSWRMs impact on the river ecosystem in terms of abiotic factors (sediments, nutrients, flow regime) will be investigated and linked to in-stream habitat availability. Field experiments will be performed to measure the efficiency of a NSWRM (small floodplains reconstruction) in terms of sediment and nutrient retention. A modeling cascade will be developed by integrating tree models in order to solve the scale issues. An hydrological model will describe the spatially explicit response of the catchment to climatic and land use forcings with a coarse scale. Hydrological outputs will be used as inputs to an hydraulic model that will describe the local in-stream conditions with a finer scale. Such local abiotic forcings will be used by an ecological model (e.g. a species distribution model) describing their impact on river’s habitat availability. Finally, the developed modeling cascade, integrated with the results from the field work, will be used to assess the variation in ecosystem services related with the implementation of NSWRMs. Different NSWRMs classes, sites and management scenarios will be tested to assess the optimal locations as well as possible tradeoffs or synergies.
-
Forschungskooperation Pianpian Wu
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.06.2018 - 30.06.2019
Funding Agency: Sonstige
Project-Leader: Martin Kainz
-
Forschungskooperation TRAISEN-FREQUENZY
Stream Ecology and Catchment Biogeochemistry (ECOCATCH)
Duration: 01.06.2018 - 31.03.2019
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Jakob Schelker
-
UNiTED – Unravelling the role of nutrients and algae in terrestrial dissolved organic matter degradation in the hyporheiczone
Duration: 01.05.2018 - 01.04.2020
Project-Leader: Katrin Attermeyer
-
PURIFY - Effects of desiccation on the self-purification capacity of headwater streams: Consequences for the stream management
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.04.2018 - 30.09.2021
Funding Agency: Bund (Ministerien)
Project-Leader: Gabriele Weigelhofer
Water scarcity and drought impair the self-purification capacity of streams and may result in water quality deterioration. The study aims to a) investigate the effects of drought on the self-purification capacity and the water quality of streams, b) identify factors which determine the resilience of stream processes to drought, c) model potential consequences of drought for selected reaches, and d) develop a guideline for water management authorities to assess the risks of water quality deterioration due to drought. We will investigate drought effects on the water quality and the self-purification of streams via both field sampling and lab experiments. In 2018-19, intermittent streams in Lower Austria, Carinthia and Burgenland will be sampled before, during, and after the drought for nutrients and organic matter in the stream water, and for the biomass and activity of biofilms in the sediments. We will perform nutrient addition experiments to calculate nutrient uptake during different phases of drying. In the lab, we will determine the effects of drying on the nutrient uptake via experimental flumes and sediment perfusion cores. For three reaches, we will combine uptake rates with the results of 2D hydrodynamic models (RSim-2D) to estimate the potential consequences of drought in dependence of discharge. In addition, we will identify factors which determine the vulnerability of streams to drought and we will develop a guideline which supports stream managers in the management of intermittent streams. Our project partners are: Dr. Michael Tritthart from the Institute of Water Management, Hydrology and Hydraulic Engineering (IWHW) of the BOKU, who is responsible for the establishment of the hydrodynamic model; Dr Daniel von Schiller from the University of the Basque Country (Group Stream Ecology) and Dr Michael Mutz from the Brandenburg University of Technology (Dep Freshwater Conservation), who will support both the field sampling and the lab experiments with their long-term experience in intermittent streams research. This project is funded by Klima- und Energiefond (Austrian Federal Government) through the “Austrian Climate Research Programme ACRP 2017” (GZ B769828 „ACRP10 – PURIFY – KR17AC0K13643”).
-
Forschungskooperation: The trophic cascade of herbicides: Effects of herbicides and their metabolites on non-target organisms (periphyton & macroinvertebrates)
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.03.2018 - 31.10.2019
Funding Agency: Sonstige
Project-Leader: Elisabeth Bondar-Kunze
-
QUEEN-IS-FAT - Hotspots of aquatic primary productivity within the Mitchell river system and the importance of floodplain/floodplain wetland production during the wet season in supporting upstream river ecosystems
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2018 - 31.12.2022
Funding Agency: Sonstige
Project-Leader: Martin Kainz
-
The Self-purification capacity of the hyporheic zone under the pressure of hydrological extreme events (STONE)
BIGER & ECOCATCH
Duration: 01.01.2018 - 30.06.2021
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Intermittency affects the self-purification capacity of headwater streams by changing the viability of biofilms and, thus, the intensity of biogeochemical processes in the benthic and the hyporheic zone. The main objective of the project is to investigate the effects of intermittency on the self-purification capacity of gravel bed streams in temperate climate zones. We are investigating the effects of drying and re-wetting on biofilm communities and on the organic carbon and nutrient cycling in the hyporheic zone via experimental flumes specifically designed for this purpose. The flumes are 5 m long, 0.6 m wide, and 1.2 m deep and are filled with gravel up to a depth of 80 cm. Inlets and outlets at different sediment depths allow us to lower the water level in the flumes until only a residual flow in the bottom sediment layer is left, thus simulating partial desiccation common for temperate regions. Experiments will deal with the effects of drought conditions (e.g., drought duration, drought frequency, and speed of re-wetting) and sediment composition (e.g. proportion of fine sediments, POM content) on the resistance and the resilience of hyporheic communities and processes under pristine and slightly nutrient-enriched conditions.
-
LAKEMIX - The impact of mixotrophs on the microbial food web in lakes
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.01.2018 - 30.06.2022
Funding Agency: FWF
Project-Leader: Robert Ptacnik
-
Garant 2018
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2018 - 31.12.2018
Funding Agency: Unternehmen
Project-Leader: Martin Kainz
-
Wuhan Botanical Garden
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2018 - 31.12.2018
Funding Agency: Sonstige
Project-Leader: Martin Kainz
-
Forschungskooperation Lopez-Doval
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2018 - 31.12.2018
Funding Agency: Sonstige
Project-Leader: Martin Kainz
-
Forschungskooperation Haiyu Yan
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2018 - 31.12.2018
Funding Agency: Sonstige
Project-Leader: Martin Kainz
-
Sedimentuntersuchungen Neue Donau
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.11.2017 - 30.04.2018
Funding Agency: Bund (Ministerien)
Project-Leader: Stefan Preiner
The „Neue Donau“ is an 21 km long and 160 m wide articifial side-arm of the Danube which was constructed as flood-relief channel for the City of Vienna. During low water level, the Neue Donau constitutes a series of standing water bodies, which are used as recreation areas, for the regulation of the groundwater levels, for the supply of drinking water, and as habitat for a diverse fauna and flora. The project aims at studying the effects of the sediment composition on the water quality of the New Danube.
-
FUNGUP: Effekte von Parasiten auf Planktongemeinschaften
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.10.2017 - 31.12.2022
Funding Agency: FWF
Project-Leader: Martin Kainz
Microparasites are overlooked in pelagic environments as most studies have so far been limited to infectious diseases in macro-organisms and in particular on plants or animals of economical interest, such as fishes and shellfish. Recent molecular surveys highlight a wide variety of eukaryotic parasites in the microbial plankton, mainly recognized as chytrid fungi. Chytrids are adapted to pelagic life as they are characterized by a complex cycle consisting of an infective phase attached to the host from which are produced free swimming zoospores that are released into the environment for new host hunting. By suppressing phytoplankton growth, parasitic chytrids can cause a decrease in primary production. In contrast, by feeding on its algal host, chytrids can convert algal biomass into edible, nutrient-rich spores that are efficiently grazed by zooplankton and filtrator consumers. The current proliferation of harmful and toxic algal species worldwide can constitute a trophic dead end for consumers due to their inadequate quality and potential toxicity. Parasitism can be fostered by such high host abundance and during inedible or nutritionally inadequate algal blooms parasites can constitute an alternative promoting trophic transfer within the planktonic food web, both in terms of organic matter quantity and nutritional quality. Considering that parasites are not only infectious agents, but also occupy various niches in the plankton with more functional and ecological characteristics than previously thought, this research aims to shed light on phytoplankton fungal parasite (chytrids) interactions within the planktonic food web and their role in ecosystem functioning. By combining laboratory experiments with artificial food webs and mathematical modeling, we will investigate how chytrids drive the transfer of the organic matter through the dispersion of their infectious propagules (i.e. spores). The final outcome will be a food web network model including the phytoplankton parasites allowing following trophic trajectories through parasites. We will also calculate ecological indices quantifying the direct and indirect effects of phytoplankton parasites on ecosystem processes such as organic matter recycling and trophic transfer, which are considered to be indicators of stability and resilience of food webs in the context of current global change scenarios.
-
BYTHOALPS: Is Bythotrephes not invasive at home due to prey adaption?
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.09.2017 - 31.08.2021
Funding Agency: FWF
Project-Leader: Radka Ptacnikova
Spreading and establishment of species beyond their native range may have drastic ecological, environmental and socio-economic consequences. While alien species invasions receive attention, detailed knowledge about the species in their native area is often lacking. This is critical since such knowledge would help understanding potential impacts of the species in both native and invaded areas. The apparently lower impacts in the native range are often credited to long time co-evolution, however this assumption is rarely tested. Instead, we suggest that conspicuously invasive species may also have a more significant role than previously considered in their native areas. We propose to investigate the performance of a large voracious predatory cladoceran Bythotrephes longimanus (the spiny water flea) and its impacts on zooplankton populations in a part of its native range, the Austrian Montane lakes, with focus on mechanisms of prey defense adaptations in lakes where the predator is present. We aim to investigate: A) whether and how frequent Bythotrephes may reach abundances that cause significant direct and indirect effects on zooplankton community structure and biodiversity in montane lakes and, B) if difference in prey co-evolution and/or adaption of two common prey species (cladocerans of the Daphnia longispina complex and copepod Eudiaptomus gracilis) with Bythotrephes from lakes with and without presence of Bythotrephes may result in prey behavior changes and increased predator defense. This is important since Bythotrephes is likely an overlooked key species in freshwater ecosystems. Thus, better understanding about its trophic role in the ecosystems is critical for modeling and predictions. The role of Bythotrephes as predator in Montane lakes will be assessed by a combination of several approaches: 1) determination of the abundance of Bythotrephes and its zooplankton prey by combining classical zooplankton net-sampling with new high frequency sonar/ADCP and IR-video profiles for high temporal and spatial resolution data, 2) determination of migration behavior of Bythotrephes and prey by ADCP and IR-video systems, and 3) quantification of feeding in situ using novel molecular analyses of predator gut content. The field studies will be combined with laboratory studies on prey adaptation to Bythotrephes presence, including potential clonal selection of D. longispina. The project leader Dr. Radka Ptacnikova is well experienced in field and experimental work with predatory cladocerans (as shown in 8 publications on this topic). Dr. Jens C Nejstgaard and Prof Marc E Frischer have long experience in zooplankton feeding ecology projects. Nejstgaard also brings new sonar and video approaches to the project. They have both over 50 publications of relevance for the project, including from the highest ranking journals. Prof. Adam Petrusek is expert in predator-prey interactions in Daphnia and provides key expertize on the Daphnia longispina complex taxonomy and clonal structure, with over 40 publications on this topic.
-
sTURN - Does time drive space? Building a mechanistic linkage between spatial and temporal turnover in metacommunities
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.09.2017 - 31.08.2019
Funding Agency: Sonstige
Project-Leader: Zsófia Horváth
Projektlinks:
Maintenance of biodiversity at the landscape level is fundamentally linked to spatial turnover in composition of local communities (beta diversity). Theory suggests that temporal processes may be one key component sustaining beta diversity. These local temporal dynamics in turn may arise from a number of processes (including stochastic processes like ecological drift, or continuous deterministic species sorting through ongoing environmental changes). At present, we lack empirical evidence about the relative importance of these processes and their contribution to spatial turnover (i.e. beta diversity). The central synthesis aim of our working group is to better link temporal turnover to spatial beta diversity and metacommunity structure, and to understand the role of intrinsic and extrinsic forces in driving this spatio-temporal coupling. We will elucidate the importance of temporal turnover as a key driver of compositional dissimilarity in meta-analyses, and establish general scaling relationships between community turnover in space and time. By doing so, we will differentiate among the importance of alternative processes that drive temporal turnover (priority effects, transient dynamics, drift, and species sorting). Moreover, we will analyse how the coupling between temporal and spatial turnover is linked to essential habitat characteristics (habitat size, productivity), regional species pools and connectivity. The output of the working group will be a synthesis about the importance of key processes regulating diversity in biological communities across space and time. Funding: Synthesis Centre of Biodiversity Sciences (sDiv) in Leipzig; DFG
-
Trophic ecology and phylogeography of fairy shrimps (Anostraca), key species of temporary waters
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.08.2017 - 31.07.2019
Funding Agency: ÖAW
Project-Leader: Dunja Lukic
Temporary ponds comprise very diverse ecosystems regarding physico-chemical conditions. Despite the fact that they are generally small and shallow, ponds host a unique flora and fauna. Anostracans are considered keystone elements of these habitats, mainly because of their top-down effect on zooplankton assemblages and also their importance as a food for waterbirds. Through combining morphological, genetic and ecological information, scientific studies offer both valuable insights in the evolutionary history of studied groups and tools of delineating evolutionary significant units as focal points for conservation. Anostracan conservation is especially relevant as their habitats, temporary ponds, are threatened worldwide due to climate change and anthropogenic activities. Our study systems are soda pans on the Central European lowlands, which are important resting sites for numerous waterbird species during their seasonal migration on the north-south route in the Western Palearctic. The first part of the research investigates the trophic role of anostracans, relatively poorly studied group in temporary waters. In the second part, we use an anostracan metapopulation as a model to study the impact of historic and current connectivity among habitats on the genetic structure and gene flow, and compare it to the effect of local conditions. For this, we explore small-scale (~20 km radius), medium-scale (~400 km) and large-scale (Eurasian) patterns. Our model species is B. orientalis, and soda pans of Central Europe host most populations of this species worldwide.
-
Langzeitforschung Lunzer See
AQUASCALE & LIPTOX
Duration: 01.07.2017 - 30.06.2027
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
-
FRAMWAT - Framework for improving water balance and nutrient mitigation by applying small water retention measures
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.07.2017 - 30.06.2020
Funding Agency: EU
Project-Leader: Thomas Hein
Projektlinks:
The good ecological status of surface water in EU in 2015 has improved by 10 % since 2009. However, there are still major efforts needed in order to achieve a better status of aquatic ecosystems. Various types of measures listed under the name Natural (Small) Water Retention Measures (N(S)WRM) can have significant positive effects on solving environmental problems such as hydrological extremes (floods and droughts), increased fine sediment erosion and deposition, nutrients’ transport and decreased biodiversity. Still a major concern is to understand how different measures might interact and how these measures can be optimized to reach multiple aims and mitigate several management issues. FramWat aims to increase the buffer capacity of the landscape by using the natural (small) water retention measures approach in a systematic way. Since rivers do not observe national boundaries, a collective response and transnational integrated approach is needed to translate the knowledge about N(S)WRM features into river basin management practice. FramWat will provide decision makers with appropriate tools to incorporate N(S)WRM into the next cycle of River Basin Management Plans and offer guidance and raise awareness about the importance of horizontal integration of different planning frameworks.
-
Fast and selective detection of organic pollutants in Water (Water sensors)
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.05.2017 - 31.07.2019
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Thomas Hein
The pollution of water with specific hazardous substances and their quantification is a key issue in water management and of great importance. The main aim of the project is the development and optimization ion selective electrodes (ISEs) for rapid and accurate water analysis. The electrodes are developed by the Centre of Electrochemical Surface Technology (CEST; project leader Philipp Fruhmann) and are tested and optimized in the experimental lab flumes at WasserCluster Lunz. In the project, CEST will develop a potentiometric ISE prototype which is able to detect pollutants down to a concentration of 10-9 mol/L in the final project stage. We will test a set of 10 organic water contaminants mainly belonging to the group of pharmaceutical active ingredients (PhACs). These compounds were chosen based on their recent detection within the Danube. All water and air stable complexes will be included in the first prototype electrodes. In order to find the best composition regarding sensitivity, selectivity and nernstian behaviour, screenings with different plasticizers and different ratios of plasticizer, PVC and the ion pair complexes will be carried out. The best working potentiometric ISE electrodes will be tested in spiked samples with different turbidity levels, sediments and microbial contamination in the lab flumes at WCL in order to establish a protocol for real life samples and the improved sensor. This project is expected to lead to the development of an approach towards the preparation of ion sensitive devices for all kind of nitrogen containing water and environment pollutants. This will enable us to prepare taylor-madeelectrodes/sensors for all kind of applications within a minimal amount of time. Such sensors would be a perfect tool for the monitoring of contamination spreading through water systems without any delay compared with LCMS methods.
-
Trophic pathways - Polyunsaturated fatty acids in stream food webs
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.05.2017 - 31.05.2020
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Nadine Ebm
This research investigates, a) spatial and seasonal variation in consumer dependence (benthic invertebrates and fish) onelemental (C and N and their stable isotopes) and molecular (lipids and their fatty acids) composition of basal resources along a longitudinal, pre-alpine stream gradient (ecosystem approach), b) under different light conditions, the effect of allochthonous and autochthonous diet sources in headwater streams on dietary supply and retention of fatty acids in headwater benthic invertebrates (experimental approach), and, c) using radioactive hepatocyte bioassays, the ability of freshwater fish to convert precursor fatty acids to DHA to compensate for a lack of dietary DHA (hepatic lipid metabolism in freshwater fish). This research will use state-of-the-art methods, including flume experiments and fish hepatocytes bioassays, linked with field investigations and apply stable isotopes and fatty acids. Results will shed considerable light on the long-standing question of how consumers in headwater streams, but also in lowland streams, manage or fail to obtain essential nutrients and high quality forms of energy. Together with an international team of high-profile researchers (Tom Battin as stream biofilm expert; Stuart Bunn as riverine food web expert; and Brian Fry as stable isotope ecology expert), this research project will be coordinated and lead by the PI (Martin Kainz with trophic lipid expertise), provide excellent training for students and the post-doc involved and considerably contribute to a more comprehensive understanding of trophic energy transfer and lipid dynamics in stream organisms along increasing trophic levels.
-
HYDRO-DIVERSITY - Auswirkungen hydrologischer Konnektivität von Böden und Fließgewässern auf die Biodiversität und die Funktionsweise von Gewässerökosystemen der voralpinen Zone
Stream Ecology and Catchment Biogeochemistry (ECOCATCH)
Duration: 01.04.2017 - 31.03.2021
Funding Agency: ÖAW
Project-Leader: Jakob Schelker
Small headwater streams interlink catchment soils with the river network and contribute substantially to CO2 emissions of inland waters. At the same time, recent studies have identified small streams as ‘critical reservoirs’ of microbial diversity, but the origin of this diversity is not well understood. The core objective of the HYDRO-DIVERSITY project it therefore to investigate the dynamic transfer of dissolved organic matter (DOM) and microbial life from catchment soils to streams and to evaluate the impact of these influxes on stream biofilm community composition and biodiversity. The HYDRO-DIVERSITY project will address this task by a unique set of experimental work that will be performed across several soil-stream interfaces located along an elevation gradient within the pre-alpine Oberer Seebach (OSB) catchment in Austria. Overall the HYDRO-DIVERSITY project is set out as an interdisciplinary approach involving the disciplines of hydrology, geography, soil science, chemistry and microbial ecology to understand the origin of biofilms in small streams. This understanding will contribute to gain deeper insights into ecosystem functioning of small streams and their contribution to CO2 evasion. The HYDRO-DIVERSITY project is headed by Jakob Schelker. Collaborators within the project are Dr. Katharina Besemer from the Wassercluster Lunz and em. Prof. Peter Peduzzi from the University of Vienna. The project is funded by the Austrian Acadamy of Sciences from 2017-2020.
-
FLASHMOB: FLuxes Affected by Stream Hydrophytes: Modelling Of Biogeochemistry
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.03.2017 - 28.02.2021
Funding Agency: FWF
Project-Leader: Thomas Hein
The input of organic matter and nutrients to coastal ecosystems is crucial for their trophical state. The quality and quantity of this input is determined by upstream processes in the river system. Though macrophytes can be found within the whole catchment and are affecting the whole ecosystem structure of streams, their role in organic matter and nutrient transformation has obtained less attention. Therefore the main aim of the project is to quantify the effect of macrophytes on downstream C-N-P-Si fluxes in rivers, a key aspect to understand fundamental ecosystem processes and the basis for future management decisions. At present, most studies in this field are simplified, either by detailing only the biogeochemical process or by incorporating only the impact of vegetation on hydraulics. In this study both aspects will be combined in a dynamic coupled model to cover the complex interaction of processes an integrated, numerical model will be developed. A hydrological state-of-the-art 2D model will be coupled with a water quality model (DELWAQ) and an aquatic vegetation growth model. This will be done stepwise, starting with basic biogeochemical processes, adding macrophytes which are affecting flow patterns and biogeochemical transformations, and finally implement sediment/water interactions. With the coupled model different scenarios (with or without aquatic vegetation, changes in environmental conditions due to climate change scenarios) are simulated to test the main hypothesis of the project, that the interactions between macrophytes and the hydrodynamic conditions are determining the transport: transformation ratio of organic matter and nutrients and thus, influencing the overall carbon and nutrient cycles of these river systems. Simulations will be done on sub-catchment scale and cover the vegetation periods of two years. For this study we will select a sub-catchment of the River Danube that has several small vegetated river sections with different plant: water ratios. To set-up the integrated model, a field sampling campaign assessing hydrological and limnochemical parameters, as well as macrophyte development and sediment characteristics will be conducted. These investigations will be complemented with experimental approaches to determine macrophyte growth and decomposition rates of organic matter in the sediment. The findings of the project will expand our knowledge on the role of macrophytes and provides new insights in these complex interactions and how these will be affected by future developments. The model approach combines the expertise of the two involved working groups, WasserCluster Lunz (Thomas Hein) focussing on river floodplain systems and the effects of hydrological connectivity on biogeochemical cycling and aquatic primary production and ECOBE, University of Antwerp (Patrick Meire, Jonas Schoelynck), working on the role of aquatic vegetation in river ecosystem functioning. Partner: University of Antwerp – ECOBE – Patrick Meire. Funding: FWF
-
Organic carbon cycling in streams: Effects of agricultural land use
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.01.2017 - 31.12.2019
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Gabriele Weigelhofer
Agriculture is the dominant land use form in Lower Austria, covering more than 46 % of the total area. Agriculture delivers significant amounts of dissolved organic matter (DOM) to streams, thereby changing basic processes at the water-sediment interface and affecting the ecological state of the stream ecosystem. The aim of the project is, thus, to investigate the influence of agricultural land use on the quantity and quality of DOM inputs to streams and to clarify the effects of this DOM on the aquatic carbon cycling in stream ecosystems. Our research will be based on both in-situ determinations of DOM quality and stream processes in the Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, a priority area for the FTI strategy of Lower Austria, and on laboratory experiments at the WasserCluster Lunz and the Bundesamt für Wasserwirtschaft (Petzenkirchen). In microlysimeter experiments, we will focus on the effects of different agricultural practices (e.g. fertilization, tillage, liming) on the amount and composition of DOM delivered to fast-draining near-surface flow paths. In the HOAL catchment, we will measure the impact of different flow paths, such as surface runoff, tile drainage and groundwater, on the DOM input during baseflow and stormflow conditions. Via incubation experiments, we will investigate the effects of different DOM sources on the growth and activity of benthic microorganisms, the oxygen consumption in the stream, and the aquatic emission of greenhouse gases. The results will be analyzed with respect to consequences of DOM inputs from agricultural areas for the health and the ecological state of stream ecosystems and will be incorporated into recommendations for a sustainable management of agricultural streams. In addition, the Center for Integrated Sensors Systems at the Danube University Krems will develop a sensor for the in-situ determination of DOM in freshwater to be used in both scientific research and water quality monitoring. At present, DOM analyses in freshwater studies mostly rely on water sample analyses in the laboratory, limiting sampling frequency and affecting data quality. In-field DOM sensors with a high temporal resolution will facilitate the tracking of DOM changes over time, e.g. in response to variations in biotic activities or hydrology, and will, thus, enable a detailed insight into DOM dynamics. In the case of water quality monitoring, DOM sensors could be used to detect organic pollution, such as diesel oil, farm leakage, or sewage inputs, and as early-warning systems of failure in water quality. Funding: Government of Lower Austria (Science call 2015)
-
AQUACOSM – Netzwerk führender europäischer AQUAtischer MesoCOSMen Anlagen von der Arktis bis zum Mittelmeer
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.01.2017 - 31.08.2021
Funding Agency: EU
Project-Leader: Robert Ptacnik
Projektlinks:
Lakes, rivers, estuaries and oceans are closely connected. Despite this, aquatic research is still divided in marine and freshwater sciences. Now scientists from 19 leading research institutes and universities and two enterprises from 12 countries across Europe aim to change this and have joined forces in the project “AQUACOSM - Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean”. The network will perform the first systematic large-scale experiments in both freshwater and marine ecosystems. The project is coordinated and lead by Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB). "For more than 100 years, inland water and marine research have largely developed in parallel to each other. Now it's time to reunite both", says IGB researcher Jens Nejstgaard, who leads the new EU project. In AQACOSM scientists from both disciplines are building an integrated, international network of experimental infrastructures. Their aim is to significantly improve the quality of experimental data for all types of water. "We want to better coordinate international large-scale experimental research projects, develop good practices together, and open up the freshwater and marine mesocosm research infrastructures for a broader international, interdisciplinary collaboration", says Jens Nejstgaard. Mesocosms are containers in which large volumes (1-1000 m3) of water including the natural organisms is experimentally enclosed and manipulated. In this way effects of individual and combined stress factors can be tested on entire ecosystems over weeks to years. Within the project AQUACOSM researchers will examine how different aquatic ecosystems react to environmental impacts caused by global climate change and the increasing pressure by the growing world population. "The impact of these stress factors can vary widely within different ecosystems and seasons", emphasizes Nejstgaard. Therefore they have to be investigated in different climatic and geographic regions, using comparable mesocosm experiments and measurement methods. AQUACOSM offers the necessary research infrastructures to do experimental research in a range of different European water types, in climatic and geographic zones stretching from the Arctic to the Mediterranean. The experimental infrastructures of the 21 partner institutions include, for example, tank systems and flow channels on land, such as in Lunz am See (Austria) and large free-floating open-ocean facilities such as The Kiel Offshore Mesocosms (KOSMOS). The IGB-LakeLab in Lake Stechlin also set a new benchmark in experimental freshwater research with its unique dimension (24 mesocosms with 1,270 m3 each). Launched in January 2017, the AQUACOSM project runs until December 2020 and is unique in size and approach. It is supported by the European Union H2020-INFRAIA Project No. 731065 with a budget of € 9,999,807.
-
Fischökologische Untersuchung im oligotrophen, hochalpinen Gossenköllesee
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2017 - 31.12.2017
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Martin Kainz
The introduction of fish into mountain lakes typically leads to profound ecological changes, which are difficult to predict because the consequences depend on the dietary preferences of fish and on the resistance of prey organisms against predation. In this study, stable isotope and fatty acid analyses in combination with the traditional stomach content analysis were used to examine the trophic ecology of brown trout (Salmo trutta) in Gossenköllesee located in Kühtai, at 2.417 m a.s.l.. The results indicated that benthic and planktonic food sources, but especially chironomids were the most important prey items all year round. Terrestrial insects had only secondary importance as a food source during the ice-free period, while copepods were relevant for fish diet only during the ice-covered period. The hypothesis that stable isotope values of the liver tissue reflect short-term changes in diet could be confirmed, since stable isotope signatures showed statistically significant changes between the ice-covered and ice-free period. Fatty acid analysis provided information not only of lipids as a biomarker, but also revealed that concentrations of poly-unsaturated fatty acids in chironomids, copepods and chydorids are sufficient for a balanced fish diet. The conducted mark-recapture procedure estimated this fish population to consist approximately of 530 adult individuals, which are characterized by a low annual growth and a low condition factor. These results are important for possible future reintroduction efforts, as this population is one of few with pure danubian origin.
-
Trophic ecology and population structure of Salmo truttain Gossenköllesee
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2017 - 31.12.2017
Funding Agency: sonstige öffentlich-rechtliche Einrichtungen (Körperschaften, Stiftungen, Fonds)
Project-Leader: Martin Kainz
-
Understanding the interaction of hydromorphological restoration measures and other human pressures on nitrogen cycling and GHG emissions
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.01.2017 - 31.12.2021
Funding Agency: Sonstige
Project-Leader: Renata Pinto
-
DANUBIUS – PP project: “Preparatory Phase for the Pan-European Research Infrastructure DANUBIUS-RI”
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.12.2016 - 30.11.2019
Funding Agency: Sonstige
Project-Leader: Thomas Hein
DANUBIUS-PP is a three-year project to raise DANUBIUS-RI (International Centre for Advanced Studies on River-Sea Systems) to the legal, financial and technical maturity required for successful implementation and development. 29 partner institutions from 16 European countries are working under the lead of the Romanian research institute GEOECOMAR to develop the structures and processes of the RI in order to ensure that the RI strengthens scientific cooperation and performance in the entire Danube region, from river source to coastal sea. WasserCluster Lunz is one of the partners, contributing substantially to most of the 10 work packages. DANUBIUS-RI will be a pan-European distributed research infrastructure dedicated to interdisciplinary studies of large river–sea systems. It will enable and support research addressing the conflicts between society’s demands, environmental change and environmental protection in river–sea systems worldwide. Read more: http://www.danubius-ri.eu/ Funding: EC H2020 CSA
-
GROW - Dietary pathways of PCBs to top predators in mountain lakes
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.09.2016 - 31.08.2017
Funding Agency: FWF
Project-Leader: Martin Kainz
Die Kenntnis von trophischen Interaktionen in aquatischen Nahrungsnetzen ist für die Evaluierung von Energie- sowie Schafdstoffflüssen notwendig. Ein wichtiges Beispiel ist die Anreicherung von Verunreinigungen entlang der aquatischen Nahrungskette, von Algen bis zu Fischen. Obwohl es bereits Untersuchungen über die Anreicherung von etwa PCBs in Fischen gibt, ist es bis dato unklar, welche Rolle die Nahrungszusammensetzung für den trophischen Transfer dieser Schadstoffe hat. Getrennte Analysen des Fischdarminhalts oder stabile Isotopenanalysen sind oft unzureichend. In diesem Projekt werden wir Energieflüsse aus verschiedenen Nahrungsquellen in Mesokosmen untersuchen. Wir werden state-of-the-art Nahrungs-Biomarker wie stabile Isotopen gemeinsam mit Fettsäurenanalytik und komponenten-spezifischen stabilen Isotopen verwenden, um Nahrungsquellen für Fische und die Nahrungsherkunft von Schadstoffen in Fischen festzustellen. Hierzu werden wir 'mixing models' verwenden, um den relativen Beitrag der benthischen und pelagischen Nahrungsquellen für Fische festzustellen. Diese Methoden werden wir auch an vorhandenen Proben des Nahrungsnetzes des Lunzer Sees anwenden, womit wir die Resultate der Mesokosmenuntersuchungen auch für den See evaluieren können. Wir erwarten, dass die kombinierte Verwendung dieser Analysen unser Verständnis des Nahrungstransfers aus unterschiedlichen Quellen des aquatischen Nahrungsnetzes deutlich erweitern wird und wir dadurch einen Fortschritt für den aquatischen Schadstofftransfer leisten können. Dieses Projekt wird die aktuelle Forschungsarbeit der Doktorandin sowie die Forschungsentwicklung am WasserCluster Lunz über die Auswirkungen der trophischen Strukturen und Energieflüsse auf die Anreicherung von Schadstoffen in Fischen von Bergseen stark unterstützen.
-
WILDE MULDE - Revitalisation of a riverine landscape in Germany
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.09.2016 - 30.11.2022
Funding Agency: Sonstige
Project-Leader: Thomas Hein
The revitalization of riverine landscapes can impact key ecosystem function and services. The exact effects of revitalization measures on different ecosystem properties are not well known. Thus, in an interdisciplinary project the effect of changes in structural components and hydrological dynamics on biodiversity and biogeochemical cycles in aquatic and terrestrial habitats and associated ecosystem services will be investigated in the riverine landscape of the River Mulde, a tributary of the River Elbe in Germany. Within the revitalization project the following measures will be implemented: removal of river embankments, reconnection of floodplain side-arms and introduction of large woody debris. The aim of the pilot phase of the project is to characterize the status quo and establish predictive models to analyse potential effects of planned measures. The team of WasserCluster Lunz is investigating the current status of inorganic nutrients, namely phosphorus and nitrogen, in different habitats of the riverine landscape, the status of algal communities and thus, to assess the nutrient balance and nutrient retention capacity of the impacted river stretches. Key research questions addressed are how changes in river bank morphology and landscape connectivity will impact nutrient retention behavior, how nutrient uptake and release is affected based on changed physical and microbial properties and how changes in algal development impact the overall retention capacity. Funding: BMUB und BMWF Germany. Coordination of the overall research project: UFZ Leipzig.
-
INTERBIRD - Grenzüberschreitende Koordination der ökologischen Monitoringaktivitäten in den NATURA 2000 Gebieten der Neusiedler-See und Hanság (EU-Projekt Interreg V-A Österreich-Ungarn)
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.07.2016 - 31.12.2020
Funding Agency: EU
Project-Leader: Zsófia Horváth
Projektlinks:
Astatic soda pans are important natural heritage sites of Europe, which are unique to the Carpathian Basin (eastern Autria, Hungary, northern Serbia). They are listed as priority habitats in the Natura 2000 network of the EU. They are seriously threatened ecosystems, with a habitat loss of 80% in the last 150 years. Seewinkel in eastern Austria with its relatively tiny area hosts 25% of all the remaining soda pans and therefore has a key role in the long-term conservation of these ecosystems. Crustacean invertebrates mean high quality food for waterbirds. Among all aquatic habitats worldwide, soda pans produce the highest crustacean biomass, which makes them particularly important as stopover-sites for migrating birds. While we know that soda pans represent an outstanding resource especially for migrating birds, we are unaware how the food web functions. The project aims at achieving a general understanding of the trophic pathways from primary production up to the birds. Understanding the functioning of an ecosystem is mandatory for its protection and we currently miss crucial knowledge about the basis of a food web and how it contributes to an important ecosystem service (sustaining large flocks of migratory birds). This also has crucial implications for habitat restoration plans.
-
Wasser:KRAFT - Energie aus Wasser – Wasserkraft und Algen: Energiequellen der Zukunft
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.06.2016 - 31.10.2018
Funding Agency: Bund (Ministerien)
Project-Leader: Thomas Hein
Children and teenager from the region of Mostviertel work together with researchers and experts to explore water power. Experts explain how to gain water power using the example of regional water power stations, and ecological consequenzes for streams. Moreover the children learn about microalgae and how to produce engergy out of it. The project is funded by the Austrian Ministry for Transport, Innovation and Technology, it is a cooperation of WasserCluster Lunz, BIOENERGY 2020+, EVN and Hydro-Connect and it is performed in the course of the programm "Talente regional" from the Austrian Research Promotion Agency (FFG).
-
ALPHA-OMEGA - Trophic pathways of omega-3 fatty acids in stream food
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.06.2016 - 31.05.2021
Funding Agency: FWF
Project-Leader: Martin Kainz
Das seit langer Zeit etablierte 'River Continuum Concept' besagt, dass der Oberlauf von Flüssen stark von terrestrischem Eintrag wie Laubfall bestimmt ist. Gleichzeitig stellen die kalten Flussoberläufe auch Lebensräume für Süßwassersalmoniden wie Forellen und Saibling dar, die reich an omega-3 Fettsäuren (n-3 PUFA) sind. Jedoch beinhaltet Laubfall keine n-3 PUFA, die die Salmoniden wie auch Insektenlarven aus physiologischen Gründen benötigen. Es stellt sich daher die konzeptuelle Frage, wie vor allem Fische ihren Bedarf an langkettigen n-3 PUFA in Flussoberläufen decken können. Um diese Frage zu beantworten, verfolgt dieses Forschungsprojekt folgende Ziele; a) räumliche und zeitlich gestaffelte Untersuchung der Nahrungsabhängigkeit von benthischen Invertebraten und Fischen auf die elementare (C und N sowie deren stabilen Isotopen) und molekulare (Lipide und deren Fettsäuren) Futterzusammensetzung entlang voralpiner Flussläufe (Ökosystemuntersuchung), b) experimentelle Forschung über die Rolle von Licht auf die biochemische Zusammensetzung von terrestrischem (Laub) und autochtonem (Algen) Material als Futter für benthische Invertebraten, und, c) Laborversuche an Leberzellen von Fischen (Salmoniden und Cypriniden) aus Flüssen um zu untersuchen, ob und wie Fische aufgrund enzymatischer Eigenleistung kurzkettige n-3 PUFA zu langkettigen n-3 PUFA konvertieren können. Dieses Forschungsprojekt untersucht die Rolle von Futter als Lieferant von Nahrungsqualität (exogene Quelle) und gleichzeitig die Fähigkeit der Konsumenten die Futterqualität biochemisch aufzuwerten ("trophic upgrading"). Diese Untersuchungen werden gemeinsam mit international renommierten Wissenschaftern trophische Zusammenhänge in Nahrungsnetzen von Flüssen evaluieren und die Herkunft von essentiellen langkettigen n-3 PUFA in Fischen feststellen.
-
COMPETITION AND TOP-DOWN CONTROL as potential factors controlling microbial diversity in aquatic networks
Duration: 01.06.2016 - 31.05.2022
Funding Agency: Sonstige
Project-Leader: Katharina Besemer
One of the major goals of aquatic ecology is to understand the suite of local and regional processes, which govern community assembly and biodiversity patterns in aquatic networks. In the last years, the significance of microbial diversity for carbon and nutrient cycling in streams, rivers and lakes has progressively been unveiled. A number of studies suggested that species sorting according to environmental conditions constrain microbial diversity in habitats with long retention times such as lakes, while mass effects support microbial diversity in habitats with short water retention times, such as streams. Competitive interactions, dispersal dynamics and interactions with other trophic levels might contribute to microbial diversity patterns; however, experimental evidence for the importance of such mechanisms is missing as yet. The overall objective of the proposed research is therefore to disentangle the mechanisms potentially driving microbial diversity in aquatic ecosystems. Specifically, the following hypotheses will be tested: (i) Competitive interactions govern community assembly in habitats with long water retention times which is reflected in the community’s phylogenetic structure (ii) the diversity of potential bacterivores influences bacterial diversity and (iii) in the absence of dispersal, microbial communities show proliferation of typical freshwater taxa. Using an experimental approach, the diversity of bacteria and small eukaryotes from aquatic habitats differing in retention time under different dispersal regimes will be monitored using microcosms. Data on microbial diversity and community composition will be obtained by Illumina sequencing of the 16S (bacteria) and 18S (eukaryotes) rRNA gene. The phylogenetic structure and the degree of phylogenetic clustering will be used to assess the role of competition between microbial species and potential interactions between different trophic groups. The proposed research is meant to better integrate microbial ecology – itself embedded in a cutting-edge methodological entourage – with ecological theory and will equally contribute to microbial ecology and general aquatic ecology.
-
CHRYSOWEB - The effect of mixotrophic chrysophytes on secondary productivity in pelagic food webs (Marie Curie Individual Fellowship for Csaba Vad)
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.02.2016 - 31.01.2018
Funding Agency: EU
Project-Leader: Csaba Vad
Projektlinks:
Plankton occupy a key position in aquatic trophic webs, and today, a highly relevant topic lies ahead in assessing its global change-mediated shifts, with implications for the functioning of aquatic systems. Mixotrophic chrysophytes are prevailing elements of phytoplankton in oligo- and mesotrophic lakes. Their contribution is predicted to increase with climate warming, which imply serious consequences for pelagic trophic efficiency and ecosystem services e.g. fish production. However, our current knowledge on the nutritional quality and bottom-up effect of chrysophytes is insufficient. CHRYSOWEB aims to reveal their effects on zooplankton secondary production and diversity in a multi-disciplinary approach, which will significantly contribute to the understanding of carbon flow and nutrient cycling in alpine lakes under global change. Laboratory feeding experiments will be combined with field observations to quantify species-specific responses of relevant zooplankton taxa to chrysophytes. The underlying mechanisms will be biochemically analysed in algae and consumers.
-
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 07.12.2015 - 07.01.2016
Funding Agency: EU
In diesem Forschungsprojekt werden in Seen aus unterschiedlichen trophischen Stufen Algentaxa identifiziert, um herauszufinden, wie sich toxisches Methylquecksilber durch die Anzahl und Taxonomie von Algen verhält. Diese Untersuchung erfordert die mikroskopische Idenifizierung von Algenproben aus 7 Seen in Schweden.
-
Forschungskooperation AQUACROSS: Knowledge, Assessment and Management for AQUAtic Biodiversity and Ecosystem Services aCROSS EU policies
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.06.2015 - 30.11.2018
Funding Agency: EU
Project-Leader: Thomas Hein
-
EXCARB - Influence of climate extremes on carbon dynamics across the boundaries of aquatic ecosystems
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.02.2015 - 31.12.2018
Funding Agency: ÖAW
Project-Leader: Jakob Schelker
Projektlinks:
Hydrological extremes are predicted to increase as climate change progresses and we may therefore expect more frequent droughts and floods. The implications of such hydrological extremes on the carbon cycle in inland waters remain poorly understood. The broad objective of EXCARB is to study possible effects of past, present and future hydrological extremes on carbon fluxes at catchment scale and across the boundaries of terrestrial, stream and lake ecosystems. EXCARB will pave the way to construct a predictive model of inland water carbon cycling according to climate projections for the European Alps. Based on historical hydrology records over the last 100 years, EXCARB will identify past hydrological extremes in a pre-alpine catchment, capture signatures of such extremes in lake sediments and establish a present-day carbon balance for a stream-lake continuum in that catchment. EXCARB will also relate these present-day carbon fluxes, including CO2 outgassing, to precipitation and discharge. Finally, a process-based model will encapsulate this ensemble of past and present-day information to help predict the effect of future climate projections on the carbon fluxes in pre-alpine aquatic ecosystems. EXCARB is an interdisciplinary project cutting across ecosystem boundaries that will provide essential knowledge that helps to better place streams and lakes as major players of the global carbon cycle. Funding: Austrian Acedemy of Sciences
-
IMPACTS OF CLIMATE CHANGE and land use on lake ecosystem function and services – a cross-border watercourse level approach in the European Arctic
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2015 - 31.12.2018
Funding Agency: Sonstige
Project-Leader: Martin Kainz
In diesem Projekt werden Fische und Plankton aus verschiedenen Seen auf das Fraßverhalten untersucht. Dafür werden state-of-the-art Analysen verwendet, mitunter trophische Biomarker, die Auskunft über die Herkunft des Futters in den Fischen liefern. Die wissenschaftliche Kollaboration des WasserCluster Lunz besteht darin, die Fettanalysen und deren wissenschaftliche Interpretation beizutragen. Gefördert wird das Projekt, das von Dr. Kimmo Kahilainen vom Department für Environmental Sciences der Universität Helsinki geleitet wird, von der Finnischen Akademie der Wissenschaften.
-
GARANT
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.10.2014 - 01.08.2015
Funding Agency: Unternehmen
Feeding of new food compositions to chars, constant measurement of zootechnical achievments and the scientific evaluation of this are in the focus of the project GARANT. Funding: Garant – Tiernahrung GmbH.
-
SPARKLING SCIENCE PowerStreams
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.10.2014 - 31.12.2017
Funding Agency: Bund (Ministerien)
Project-Leader: Gabriele Weigelhofer
Projektlinks:
The project PowerStreams aims to analyse the effects of nutrient loading and stream channelization on the efficiency and sustainability of the self-purification capacity of streams. We want to identify options for a sustainable management of stream ecosystems by quantifying the interaction of these different human impacts on the stream metabolism. The project is a research-education-cooperation with four partner schools: Francisco Josephinum, BRG Waidhofen/Ybbs, BORG Mistelbach, and HBLFA Raumberg-Gumpenstein. Together with the students, we will measure both the in-stream uptake of dissolved nitrogen and organic carbon and the in-stream production of green-house gases via short-term nutrient addition experiments. The investigations will be carried out in natural as well as degraded stream reaches showing low to high nutrients loads. In laboratory experiments, the students will examine the potential of sediments to produce or retain nutrients and green-house gases under different environmental conditions within the scope of their pre-scientific theses. In addition, we will analyse the effects of long-term additions of dissolved organic carbon on the metabolism and the water quality of streams. Based on our co-operations, we will develop a concept for the support of young academics through research weeks and joint supervisions of pre-scientific theses. Funding: Ministry for science, research, and economy, within the framework of the research-education-programme Sparkling Science.
-
SPATIAL patterns of zooplankton diversity in floodplains (FWF project, Griselda Chaparro in cooperation with Robert Ptacnik)
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.07.2014 - 30.06.2016
Funding Agency: FWF
Project-Leader: Thomas Hein
Understanding the spatial distribution of diversity is a main interest of ecology and its relevance is enhanced under the current scenario of progressive diversity loss. Measures of species diversity are dependent on the spatial scale considered, mainly because environmental factors that affect species composition show different ranges of variation among spatial scales. Despite the relevance of spatial scale is increasingly recognized in biodiversity studies, there is still a lack of understanding on how combined environmental variations at smaller and broader scales influence diversity in a certain region. Riverine floodplains host an exceptional high diversity and the hierarchical arrangement of their environments offers a great opportunity to study how spatial heterogeneity affects patterns of communities composition and diversity at multiple scales. These ecosystems are endangered because of human alterations of the natural flood regime. A comprehensive understanding of diversity distribution will contribute to plan conservation, management and restoration measures. Funding: FWF
-
HECHT - Hechte gefaehrden heimische Fischbestaende
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2014 - 31.12.2015
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Martin Kainz
Funded by the government of Lower Austria the team of Dr. Martin Kainz investigates how the rising appearance of pike in Lake Lunz influences the food web. Aim is to reduce pike in Lake Lunz.
-
DISPERSE - Role of dispersal for maintenance of diversity in experimental plankton communities
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.01.2014 - 31.12.2016
Funding Agency: FWF
Projektlinks:
An increasing number of observational studies report regional patterns in communities of aquatic protists and zooplankton, pointing at the existence of dispersal limitation in the microscopic world. Moreover, recent studies also show that natural phytoplankton communities exhibit diversity functioning relationships comparable to those known from vascular plants and other higher organisms. The existence of such patterns is in stark contrast to the conventional assumption that communities of microscopic organisms are constantly saturated. Given the importance of diversity for ecosystem functioning, a better understanding on the controls of local and regional factors on plankton diversity is mandatory. Yet, in spite of finding spatial patterns which are in qualitative agreement with metacommunity theory, we are lacking a mechanistic understanding how local and regional factors interactively control diversity in plankton communities. The proposed study aims at studying the role of dispersal for maintenance of diversity in experimental communities. To this end, mesocosms will be connected to a species rich source pool in a gradient design. Diversity and community turnover of bacterio-, phyto-, and zooplankton will be monitored, employing both microscopcic as well as molecular analyses. Measurements of resource use efficiency will be performed for all functional groups. The project will closely collaborate with mathematical ecologists who will use the data for parameterizing a dynamic model on the maintenance of diversity through dispersal.
-
ECATA - Effects of extreme events on carbon cycling along a terrestrial-aquatic continuum at the catchment scale
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.11.2013 - 30.11.2018
Funding Agency: FWF
Project-Leader: Thomas Hein
The Intergovernmental Panel on Climate Change predicts a further global average surface warming - depending on future emission scenarios - in the range of 1.1 to 6.4°C until the end of the 21st century, which may entail dramatic consequences for biophysical and socio-economic systems. As a result of the above-mentioned temperature rise, extreme events, such as high-intensity rainfall events and resulting landslides and debris flows, are expected to increase in both frequency and magnitude. For example, the top 10% of precipitation intensity is predicted to increase by about 95% for each degree Kelvin increase in global mean temperature. These extreme events episodically export large amounts of terrestrial organic carbon (OC) into fluvial ecosystems. This resets vegetation succession and soil formation on land, and exposes terrestrial OC of varying sources, age and composition to physical and (bio)chemical reactions in aquatic ecosystems. Through the former (terrestrial) processes, C is fixed from the atmosphere and re-accumulated in biomass and soils; through the latter (aquatic) processes, the exported OC may partly be respired to the atmosphere, physically or (bio)chemically modified and hence stabilized or destabilized, buried for longer-term storage in deposited sediments, or transported to the ocean. These processes depend on the contribution of different terrestrial OC pools, such as litter and biomass, soil and rock OC, which in turn is controlled by the characteristics of the extreme events. The rates and extents of these processes and their driving forces are still poorly understood and scarcely quantified, but are recently understood to be of major significance at global scales. For an improved assessment of the effects of extreme events on carbon cycling, it is therefore crucial to better understand and quantify the associated terrestrial and aquatic processes. In the ECATA project, we will focus on mountainous catchments in Taiwan, where landslides are frequent and export of terrestrial OC to aquatic ecosystems is high. We will quantify the re-accumulation and stabilization of OC in terrestrial ecosystems, and characterize the processing of exported biomass-, soil-, and rock-derived OC in freshwater ecosystems. The ECATA project will build on extensive experience in monitoring and modeling of landslides and sediment discharge by the Taiwanese partners and combine this with long-standing expertise and cutting-edge techniques to characterize OC in soils and sediments provided by the Austrian partners. Together, this shall yield fundamentally new insights into the fate of OC at the terrestrial – aquatic continuum impacted by extreme events, and provide needed inputs for improved modeling of the effects of extreme events on carbon cycling at regional scales and for better global estimations. Funding: FWF
-
DANCERS - Danube macroregion: Capacity building and Excellence in River Systems (basin, delta and sea)
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.06.2013 - 31.05.2015
Funding Agency: EU
Project-Leader: Thomas Hein
The aim of this project is develop new instruments and tools that will enhance environmental research and promote innovation in Danube Region, including the Danube Delta and the Black Sea. Importantly, the new instruments an tools do not start ab initio but will build on existing projects - covering multiple source of funding (public, private or PPP), whether national, regional or European- which will be identified and clustered. The project will undertake a critical analysis of what has been achieved so far in the region and will build upon results of achievements to-date, to desighn, innovative solutions to strengthen knowledge and busines communities as well as decision makers, specialized in various sectors of integrated management of the Danube-Black Sea macrosystem. The project will be structured on the three main pillars of Research and Innovation (i. Science an Innovation Agenda, ii. Research Infrastructures and iii. Human Capital) - and their relation to the three principal categories of stakeholder: i. Policy and Decision Makers, ii. Business / Industry community and iii. Academia. The spcific objectives of this project are to: 1. critically analyse the acievements in integrated river-delta-sea management in the Danube Region, 2. understand links between the achievements, deliverables and results of the work performed. 3. Define aset of instruments to enhance environmental research and innovation in Danube Region. The ultimate deliverable will be a toolbox of instruments which will yield 1. a strategic research agenda, 2. a concept and detailed plan of the distributed research infrastructure - bot for the Danube-Black Sea Macrosystem and 3. Proposals for an integrated educational program to be implemented at a regional level in the immediate future, with the full cooperation of partner from Danube-Black Sea Macrosystem. Funding: EU FP7; More Information: www.dancers-fp7.eu
-
INTERFACES - Ecohydrological interfaces as critical hotspots for transformations of ecosystem exchange fluxes (Marie Curie Fellowship, Kyle Boodoo)
Stream Ecology and Catchment Biogeochemistry (ECOCATCH)
Duration: 01.02.2013 - 31.12.2017
Funding Agency: EU
Project-Leader: Jakob Schelker
Gravel bars impact the hydrology and biogeochemistry of streams and rivers. Gravel bars force oxygen rich stream water into the river bed and floodplain where it mixes with nutrient and carbon rich groundwater in a natural bio-reactor “the hyporheic zone”. This is a dynamic mixing zone for these two waters. In the hyporheic zone, diverse microbial communities and fauna exist and a variety of chemical reactions occur, producing CO2 and other metabolic products. This “hyporheic” water returns to the stream after some time, biologically and chemically different from both its constituent components. INTERFACES is a Marie Curie research project (2013-2017) funded by the European Union’s FP7 programme involving 11 PhD and 4 post-doctorate researchers from over 12 institutions and 7 countries. The researchers utilize interdisciplinary methods to investigate the roles and processes occurring at important environmental system boundaries (interfaces) such as the “hyporheic zone”. The INTERFACES project work in Austria, based at University of Vienna/Wasser Cluster Lunz, is co-ordinated and supervised by Prof. Tom Battin and new BERG group leader Dr. Jakob Schelker. PhD researcher Kyle Boodoo (AG BERG) investigates the effect of in-stream gravel bars on carbon cycling, stream ecosystem metabolism and ultimately the potential for enhanced CO2 releases to the atmosphere in the Oberer Seebach (Lunz am See). Funding: EU, FP7
-
PRO AQUA, PRO TERRA
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.01.2013 - 31.03.2015
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Thomas Hein
Streams and groundwater in agricultural landscapes are usually heavily loaded with nitrate. Denitrifying bio-reactors have been used to reduce nitrate loads in drainage water by enhancing denitrification through the supply of organic matter in an oxygen-reduced environment. So far, few studies have concentrated on the environmental soundness and sustainability of this approach. In the project, we investigate the effects of denitrifying bio-reactors on the water quality of nutrient-enriched water. Beside the efficiency in nitrate reduction, we focus on the total nutrient budget of the treated water (e.g. NH4, PO4, or DOC output) as well as on the potential production of greenhouse gases (e.g. N2O, CH4). In lab experiments, we test the optimal conditions for denitrifying bio-reactors to maximize nitrate reduction and minimize “side-effects” harmful to the environment. Funding: Land NÖ
-
BIOERODS (Marie Curie Fellowhip, William Hunter)
Stream Ecology and Catchment Biogeochemistry (ECOCATCH)
Duration: 01.01.2013 - 31.12.2015
Funding Agency: EU
Project-Leader: Tom J. Battin
Inland waterways are an important component of the global carbon cycle, receiving an annual carbon input of ~ 4.8 Pg of carbon per year. Of this approximately 0.6 Pg is buried, entering the lithosphere, whilst 3.3 Pg is recycled through aquatic food webs. These numbers highlight the global importance of streams, rivers lakes and other inland waters but provide little detail regarding the dynamics of organic matter burial and remineralisation. A poorly defined aspect is the relationship between organic matter burial and remineralisation of organo-mineral complexes. Organo-mineral particles form by adsorption of dissolved organic matter to freshly-eroded mineral surfaces, and are thought to greatly control the fluxes of particulate organic carbon at the watershed scale. The unique physico-chemical properties of these particles may enhance their deposition onto and subsequent burial into the sediments of inland waters. However, the metabolic fate of these particles at the water-streambed interface remains poorly studied. Particle deposition at the streambed is enhanced by benthic microbial biofilms. As such, understanding the potential role of organo-mineral complexes in the preservation and burial of organic matter, requires investigation of the interactions with biofilms. Bio-ERODS aims to experimentally investigate biophysical mechanisms driving biofilm-particle interactions and mechanisms that potentially alter the organo-mineral complexation and thus contributing to stream biogeochemistry. Bio-ERODS will thus elucidate, at the fine scale, fundamental mechanisms of the controls on carbon fluxes in streams and rivers.
-
LIMNOTIP - Biodiversität und Tipping Points: Zukunft für Binnengewässer
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.12.2012 - 30.11.2015
Funding Agency: FWF
Project-Leader: Martin Kainz
The accelerating loss of global biodiversity has affected species in all biomes and ecosystem types. Eutrophication is and continues to be a major and severe environmental threat both within and outside Europe, which causes abrupt regime shifts, i.e. systems that reach “tipping points” and change from clear-water states to turbid conditions with dense algal blooms. Reaching such tipping points generally results in a dramatic decline in biodiversity. Using algae-zooplankton feeding experiments, we investigate how changes in algal biodiversity along a productivity/temperature gradient affect the amount of essential dietary nutrients (including lipids and their omega-3 fatty acids) available for higher trophic levels. We hypothesize that, a) algal biodiversity increases with increasing phosphorus (P; limiting nutrient) concentrations and temperature, but decreases once P concentrations and temperature keep increasing (identification of P- and temperature-induced tipping points), and, b) increasing algal biodiversity initially increases the amount of omega-3 fatty acids per unit biomass, but levels off with further biodiversity increase. These tests help enable us to assess the 'tipping point' at which the biochemical, dietary quality of algal biodiversity decreases. As a consequence, we predict that reduced algal biodiversity will lead to lower nutritional values of e.g. crustaceans, which constitute major dietary energy for fish. Hence, changes in algal biodiversity due to climate change may affect processes determining the resilience and induce tipping points for biodiversity and social-ecological systems.
-
FISK - Teilweiser Ersatz von marinem Fischmehl durch nachhaltigen Kürbiskernkuchen im Fischfutter - Auswirkungen auf heimische Saiblinge
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.07.2012 - 01.07.2014
Funding Agency: Bund (Ministerien)
Project-Leader: Martin Kainz
Freshwater aquaculture feeds still rely heavily on additions of marine fish, although it is known that marine fish stock keeps declining worldwide and the price of marine fish oil continues to increase dramatically. The aim of this research project is to evaluate how the use of sustainable, locally produced fish feeds affect the somatic development and lipid quality (in particular omega-3 fatty acids) of arctic charr (Salvelinus alpinus) in aquaculture. This research will be conducted in a series of aquaculture tanks at two temperatures and different feed compositions, using pumpkin seed press cake as partial surrogate of marine fish. We test the hypothesis that the somatic development and lipid composition of arctic charr is independent of diet quality because all fish feeds contain, a) sufficient dietary energy to support somatic growth and, b) enough omega-3 fatty acids that allow arctic char to convert shorter chains to longer fatty acid chains (ability of char to trophically upgrade its diet). In collaboration with GARANT (only Austrian producer of fish feeds), veterinary medicine, international molecular lipid research (University of Stirling, Scotland), and testing fish for human consumption (University of Natural Resources and Life Sciences, Vienna), we strive for basic and applied scientific findings for, a) health, somatic development and biochemical lipid composition of alpine char, b) applicability of pumpkin seed press cake as partial replacement of marine fish for freshwater aquaculture fish feeds, and, c) optical and sensory quality of farm raised arctic char for human consumption. Funding: BMLFUW
-
PHYTO- UND ZOOPLANKTONDIVERSITAET in (Sub-)Alpinen Bergseen entlang eines Hoehengradienten
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.01.2012 - 31.12.2013
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Robert Ptacnik
Projektlinks:
Funding: Land NÖ
-
DIVERSITAET der Planktongemeinschaft in Salzlacken
Aquatic biodiversity accross temporal and spatial scales (AQUASCALE)
Duration: 01.01.2012 - 31.12.2014
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Robert Ptacnik
Working group AQUASCALE investigates biodiversity of zooplankton communities in soda pans of national park Seewinkel (Burgenland, Austria). Funding: Land NÖ
-
PILOT PROJECT Bad Deutsch Altenburg
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.01.2012 - 01.01.2025
Funding Agency: Bund (Ministerien)
Project-Leader: Thomas Hein
Projektlinks:
Within the frame of the management concept “Integrated River Engineering Project” (IREP) for the Danube east of Vienna of the Austrian Federal Waterway Agency (viadonau), the Pilot Project Bad Deutsch-Altenburg (PP BDA) was developed and is the sixth pilot project in the Alluvial Zone National Park. This project mainly addresses improvements of the morphology and the spatial and temporal development of flow reduced areas in bank zones and permanently reconnected backwater systems. The restoration project is carried out on a river section of almost 3 km near Bad Deutsch Altenburg (river km 1887.5 – 1884.5) and the set of measures combined are: measures aiming at granulometric river bed improvement, innovative low water regulation, riverbank renaturation and waterway linkage (connection of the Johler side arm). The engineering measures are monitored in detail, analysing the effects of the measures and thus, providing inputs for the adaptive planning process. The monitoring program aims to answer the question what the effects of the different measures on specific organisms, processes and environmental conditions at different time scales are. It includes various abiotic and biotic work packages. The monitoring is run by a team of experts covering engineering, hydrological, morphological, landscape, biogeochemical and ecological aspects (WasserCluster Lunz, University of Natural Resources and Life Sciences Vienna, Technical University Vienna, University Vienna and 3 private companies).WCL coordinates the biotic monitoring programme and is studying the development of the river section in the fields of ecological functions and processes, habitat diversity and benthic macro invertebrates. Funding: Austrian Federal Ministry of Transport, Innovation and Technology and EU (Trans-European Networks)
-
PRIME - Stream biofilms: a prime site for priming
Stream Ecology and Catchment Biogeochemistry (ECOCATCH)
Duration: 01.07.2011 - 31.07.2014
Funding Agency: FWF
Project-Leader: Tom J. Battin
Priming occurs when the presence of labile organic carbon enhanced the metabolism of recalcitrant organic carbon. Mechanisms of priming and its implications for carbon cycle in increasingly studied and understood in soils but not in aquatic ecosystems. We propose to systematically and rigorously study priming in benthic biofilms in streams. We postulate that the close spatial proximity of algae, and their labile exudates, with microbial heterotrophy enables priming of putative recalcitrant terrigenous organic carbon in streams. Thus we postulate benthic biofilms as a prime site for priming and suggest a series of experiments to test this. Microcosms with biofilms and labeled (13C) recalcitrant organic carbon will serve to quantify priming and, and a combined genomic, transcriptomic and proteomic approach will unravel possible mechanisms, including shifts in community structure and enzymatic activities. Next, streamside flumes will serve to assess the implications of priming at the level of quasi-natural systems. Finally, the relevance for priming will be studied in selected stream reaches in Europe and the USA. The proposed research may contribute to better understand the net heterotrophy in numerous headwater streams and their contribution to global carbon cycling. Funding: FWF
-
QUEENSLAND - Assessment of the needs of the waterholes and floodplain of the Condamine and Balonne and Border Rivers
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.07.2011 - 31.03.2012
Funding Agency: Sonstige
Project-Leader: Martin Kainz
The aim of the project QUEENSLAND is to establish collaborative research to determine interactions between flow regime and the quality of waterholes as refuges for fish and other aquatic biota and how this influences the function of waterhole refuges. In dryland rivers, the quality of waterhole refuges in terms of food availability and food quality impacts on their ability to maintain healthy fish populations during periods of isolation. Quality is likely to influence both survival and reproductive fitness of resident fish, which in turn will determine the resistance and resilience capacity of fish populations to disturbance from drought in these rivers. Despite this important role of waterhole quality in maintaining fish populations in dryland systems, very little specific detail is known about either fish responses to changes in food availability and quality or how river flow regimes influence the availability and quality of food resources in these waterholes. It is important that we develop a more detailed understanding of these relationships in order to enable us to better manage river flows to sustain healthy fish populations. Such an understanding will permit us to make predictions concerning the ecological impacts of modified flow regimes and thus allow improvements to be made to the provisions of water resource plans. To implement the project we will select 5 waterholes in the Balonne system for repeated temporal study on 4 occasions. The outcome of this work will be to improve understanding of the ecological response of waterholes to changes in water flows in order to inform the development of environmental flow requirements for ecological values and assets dependent upon waterholes. This will allow improvement to be made to the provisions of the relevant water resource plans.
-
ALGFLO: Algendynamik in Augebieten: Störung, Diversität und Produktivität
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.03.2011 - 31.08.2015
Funding Agency: FWF
Project-Leader: Thomas Hein
According to ecological theory, the frequency of disturbance strongly affects the diversity of biological communities. Whether such a disturbance results in an increase or decrease in the diversity of a community also depends on the productivity and the resource supply rate. Thus, in environments with low nutrient supply, the same disturbance may have opposing effects on communities as compared to environments with high nutrient supply. This important interaction is, however, seldom considered in investigations of disturbance effects on plankton and benthic communities. To elucidate this interaction between disturbance, productivity and diversity, floodplain water bodies are the particularly suited ones. A strong relationship between disturbance and the development and structure of algal communities can be found there. The particular features in these water bodies also enable us to address the interactions between benthic and planktonic communities with regard to the above described interplay. Hydrological retention in floodplain water bodies is associated with lower flows, increased transparency of the water column, and lower nutrient inputs from the main channel. Disturbance and gradients of productivity and resource supply are given in an appropriate range to test the relationships between diversity, productivity and physical disturbance. Thus, the impact of environmental disturbances on productivity - diversity relationships are research questions which can be addressed excellently in these types of ecosystems. Our research program will deal with productivity-diversity relationships, effects of physical disturbances on phytoplankton and phytobenthos communities, and with phytoplankton-phytobenthos interactions at variable environmental conditions. To investigate our research questions we will perform a field survey to test if a relation between productivity and species (functional) richness of natural communities exists. We will evaluate species diversity along a major environmental gradient, incorporating variations in productivity and disturbance. By focusing on phytoplankton, phytobenthos, and their interaction we will cover important primary producers in these dynamic aquatic systems. In a second step we will perform two large field experiments with natural aquatic communities under defined conditions. We will investigate the responses of phytoplankton, phytobenthos, ciliate, and zooplankton biomass and diversity parameters in a combined mesocosm approach. We will investigate the key factors affecting diversity, biomass stoichiometry, and interaction of natural phytoplankton and phytobenthos communities after a flood event: light (turbidity) and nutrients (primarily phosphorus). Additionally, we will perform laboratory experiments to test the concurrence-interactions between phytoplankton and phytobenthos under different environmental parameters in detail. The project will advance existing knowledge on the response of natural plankton communities in highly dynamic ecosystems. It will help to develop a more detailed understanding about the coupling between diversity and productivity in floodplain ecosystems and how physical disturbances shape algal communities and their interaction in aquatic ecosystems. Funding: FWF
-
KOORDINATION LOBAU - Gewaesservernetzung (Neue) Donau - Untere Lobau (Nationalpark Donau-Auen)
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.01.2011 - 31.12.2014
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Thomas Hein
The aim of the project is to examine the feasibility of a re-connection of the Lower Lobau to the Danube River with a flow of 20 m / s to 80 m³ / s, taking into account all the framework requirements. Therefore, a calibrated mass transfer models for both groundwater and surface waters as well as a sediment model for the entire Lower Lobau will be developed. Furthermore, detailed examinations of drinking-water-related quality parameters will be conducted in the Danube and in selected locations in the Lower Lobau. From an ecological point of view, limnological processes, important nature conservation-related groups (FFH-species), and biological quality elements according to the EU Water Framework Directive will be monitored and analysed and habitat models for selected species groups will be generated. Funding: EU, Stadt Wien, Lebensministerium
-
PRIMA (Marie Curie Fellowship, Mia Bengtsson)
Stream Ecology and Catchment Biogeochemistry (ECOCATCH)
Duration: 01.01.2011 - 31.12.2014
Funding Agency: EU
Project-Leader: Tom J. Battin
-
INTERACT
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2011 - 31.12.2013
Funding Agency: Sonstige
Project-Leader: Martin Kainz
-
LIPTEMP - Temperature and diet effects on Daphnia lipids and fitness
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2010 - 31.12.2014
Funding Agency: FWF
Project-Leader: Martin Kainz
Aquatische Primärproduzenten synthetisieren essentielle Lipide und Fettsäuren, die folglich positiv auf somatisches Wachstum, Reproduktion und Überleben von Konsumenten wirken. Wechselwarme Organismen wie Algen, Zooplankton und Fische benötigen mehrfach ungesättigte Strukturlipide, um ihre Zellmembranen für physiologische Prozesse bei selbst tiefen Temperaturen elastisch und funktionell zu halten. Obwohl kürzlich erfolgte Forschung unser Wissen über die Retention von Fetten in verschiedenen aquatischen Taxa erweitert hat, wissen wir noch nicht, welche Effekte unterschiedliche Temperaturen auf a) die Lipidzusammensetzung der Zellmembranen von Algen und Zooplanktern, und b) somatisches Wachstum, Reproduktion und Überleben von Zooplankton haben. Wir beabsichtigen eine Reihe von Laborversuchen, um Temperatureffekte auf die Lipidzusammensetzung an der aquatischen Pflanzen-Tier Schnittstelle zu untersuchen sowie 'life-history traits' des wichtigen Pflanzenfressers Daphnia zu verstehen. Die erste Versuchsreihe untersucht Temperatureffekte auf die Fettzusammensetzung verschiedener Primärproduzenten (Cryptophyta, Bacillariophyta, Chlorophyta). Fütterungsexperimente werden temperaturabhängige Regulierung der Fettsäurenzusammensetzung von Struktur und Speicherlipiden in Daphnia feststellen. In einem weiteren Schritt wird die Fähigkeit von Daphnia untersucht, auf unterschiedliche Temperaturen durch deren Enzymaktivität zu reagieren, um erforderliche Phospholipide zu formen und dadurch Temperaturstreß auf deren Zellmembranen aktiv zu entgegnen (Prinzip der 'homeoviscous adaptation'). Folglich wird untersucht, wie somatisches Wachstum, Reproduktion und Überleben von Daphnia durch unterschiedliche Fettqualität und Temperatur beeinflußt werden. Diese Untersuchungsreihe verbindet Temperatur (externer Faktor) mit physiologischen Adaptationsstrategien (endogener Faktor) an der Basis der aquatischen Nahrungskette. Für dieses Forschungsprojekt werden 'state-of-the-art' Methoden Verwendung finden, einschl. Zellmembran-spezifische Fettsäurenanalytik, Genexpression sowie Nukleinsäurenanalytik (als Indikator der Wachstumsbedingungen). Forschungsergebnisse dieser Untersuchungen werden entscheidende Beiträge liefern, um unser Wissen über Nährstoff- und Biomassendynamik an der Basis der aquatischen Nahrungskette zu erweitern und uns schließlich ermöglichen, welche biochemische Qualität der aquatischen Nahrung bei unterschiedlichen Wassertemperaturen für Konsumten zu erwarten ist. Fördergeber: FWF
-
ARCARNET - The architecture of carbon fluxes in fluvial networks (START-Project)
Stream Ecology and Catchment Biogeochemistry (ECOCATCH)
Duration: 01.06.2009 - 31.12.2015
Funding Agency: FWF
Project-Leader: Tom J. Battin
Streams and rivers have long been considered as "pipelines" in the landscape that transport organic carbon (C) from the continents to the oceans. Recent studies have dramatically changed this perception, showing that aquatic ecosystems emit significant amounts of CO2 to the atmosphere, and that terrestrial C largely fuels the net heterotrophy in these ecosystems. Obviously, these observations raise the question: how can organic C that was initially stored in soils over extended periods become oxidized in streams and rivers despite the relatively short residence time in these ecosystems. ARCARNET will address this central question using an interdisciplinary approach to biodiversity and ecosystem functioning that merges microbial ecology and biogeochemistry with geophysics. Novel methods such as metabolomics and metagenomics will be rooted in advanced network and ecological theory. Microbial biofilms and their counterparts, the suspended aggregates, are major drivers of carbon cycling in streams and large rivers. First, we will study the architecture and composition of these communities and relate them to the geophysical setting in fluvial networks. We will test our hypothesis that biofilms and aggregates are analogous microbial lifestyles adapted to the geophysical setting to enhance their metabolic capacity. Using experimental metagenomics, we will identify populations involved in the metabolism of key organic compounds of terrestrial origin. We will also test the effect of algal priming and photooxidation by UV-radiation on the degradation of putatively recalcitrant compounds. New ultra-high resolution metabolomics will contribute to unravel some of the mechanisms underlying priming and photooxidation. In a comparative approach, will then study whole-ecosystem metabolism in and CO2 outgassing from various ecosystems in Alpine, tropical and Arctic networks. The carbon cycle in these biomes is predicted to be particularly prone to global warming. This ecosystem-level information, coupled with our mechanistic fine-scale understanding of processes, will serve to test fluvial networks as metaecosystems and their performance to oxidize terrestrial organic carbon. Funding: FWF
-
LITERATURE STUDY on the effects of salination on benthic invertebrates caused by road drainage run off
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.01.2009 - 31.12.2009
Funding Agency: Sonstige
Project-Leader: Thomas Hein
Salt is used on Austrian roads in winters to keep them ice-and free and snow free under specific conditions. The effects of chloride placement in rivers on the biota are hardly known. A literature study on the effects of salination on benthic invertebrates caused by road drainage run off will be conducted. Existing chemical and biological data from rivers and streams in Lower Austria will be evaluated addtionally. As project output of the first phase, a paper will be produced to serve as information and guideline for authorities working in this field.
-
OSTARRICHI FISCH - Identification of essential dietary constituents versus potentially toxic compounds in aquatic food webs
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.01.2009 - 01.09.2011
Funding Agency: Sonstige
Project-Leader: Martin Kainz
-
WETWIN - Tools for supporting the sustainable management of freshwater wetland with special regards to their roles in drinking water supply, sanitation, livelihood and ecological restoration
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.11.2008 - 01.12.2011
Funding Agency: EU
Project-Leader: Thomas Hein
Wetlands provide multiple services for the biosphere of our planet as well as for the human society: They are able to improve drinking water quality, to purify nutrient-rich river water, to protect human settlements from floods and to supply agricultural land with nutrients. In addition to this, such ecosystems increase the overall stability of the earth’s biosphere, acting as buffers against global change factors such as increasing temperature, droughts, floods and other extreme events. Within the past 150 years, wetlands have been largely threatened and degraded due to human activities like flood protection measures, intensive agriculture or the building of electric power plants and human settlements. Therefore, it is of utmost importance to preserve and ameliorate the ecological state of the remaining wetlands. Despite their protection by international contracts like the Ramsar convention, sustainable and wise management of these key ecosystems is still rare. The project WETwin, supported by the 7th Framework Programme (FP7) of the European Commission, is based on the “ecosystem services approach” defined in the “Millennium Ecosystem Assessment” of the United Nations Development Programme (UNDP) as well as on the UNESCO-HELP approach. WETwin aims at developing a broadly applicable toolbox which allows wetland managers to find sustainable, realistic and appropriate management options and to decide for the best compromise solution. Thereby, the needs of the local population (for example safe drinking water or maintenance of agricultural land) are considered as well as the requirements of a healthy ecosystem itself. Special emphasis is placed on the interactions between river basin and wetland scale on the one hand and on global (climate) change aspects on the other hand. The toolbox is built up in a modular way and may contain software tools (simulation- and decision support tools) as well as questionnaires for local inhabitants and decision makers and expert judgement systems. Six wetlands on three continents (Europe, Africa, South America) differing in size and character, are taken as examples for finding such optimal management strategies. In this way, the project WETwin also aims at enhancing north-south and south-south cooperation. Within this project, WasserKluster Lunz collaborates with the following international partner institutions: VITUKI, Budapest; Soresma, Belgium; Potsdam Institute for Climate Impact Research (PIK); UNESCO-IHE, Institute for Water Education; NGO Wetlands International; NWSC, Uganda; IWMI, South Africa; ESPOL, Ecuador.
-
BAGGERSEEN - Impacts of gravel lakes on the surface and groundwater quality Impacts of gravel lakes on the surface and groundwater quality BAGGERSEEN - Impacts of gravel lakes on the surface and groundwater quality Impacts of gravel lakes on the surface and groundwater quality
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.06.2008 - 31.05.2011
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Project-Leader: Martin Kainz
Sand and gravel are essential raw materials. Due to the limited quantity of these natural resources a sustainable excavation is of high economic relevance. However in Austria, 20 ha of potential resource areas are lost daily due to settlement and road construction. ?The average annual production of sand and gravel from major pore aquifers, e.g. in Lower Austria, is estimated at nine million cubic meters. The extraction process is either by a "dry" or a "wet" excavation. In wet excavations the material is obtained from underneath the groundwater or at the fluctuation level and results in a gravel pond. This causes both adverse and beneficial effects to the ground-water and surface-water systems (e.g., denitrification, heavy metal mobilization, input of pollutants). The aim of this project is to investigate the (possible negative) influence of gravel ponds on the groundwater quality. Knowledge of this issue will help minimize the conflict between a secure water supply and a sustainable excavation of sand and gravel resources. The estimated influence of gravel ponds on groundwater quality must address the hydrological, biological and biochemical processes. This requires an understanding of the mass balances composing the gravel pond/groundwater system. To obtain a holistic understanding of the system, several lakes in Lower Austria, Upper Austria and Styria will be selected to identify and analyze processes affecting the groundwater quality.? Factors influencing the groundwater will be investigated in an interdisciplinary approach by Prof. Dr. Thilo Hofmann from the Department of Environmental Geosciences (University of Vienna), responsible for the hydrological and hydrochemistry parameters and Prof. Dr. Tom J. Battin and Dr. Martin Kainz from Department of Limnology and the WasserKluster Lunz, respectively, who will address the biological conditions and effects on the ecosystem. Funding: States of Lower Austria, Upper Austria, Styria;Forum Rohstoffe
-
KARPFEN - Diet effects on fatty acids and mercury in carp
Aquatic lipid and ecotoxicology research group (LIPTOX)
Duration: 01.04.2008 - 30.04.2011
Funding Agency: FWF
Project-Leader: Martin Kainz
The objective of this translational research proposal is to study effects of essential (polyunsaturated fatty acids, PUFA) and potentially toxic (methyl mercury, MeHg) fish diet composition on PUFA and MeHg concentrations, and somatic growth condition of farm-raised common carp (Cyprinus carpio), a frequently consumed diet fish in Austria. This proposal bridges scientific ecological, ecotoxicological, and nutrition questions. Based on dietary supply of various biochemical fish feed compositions, the following hypotheses test that, A) increased biochemical quality of fish diet, as measured by omega-3 and -6 PUFA, results in increased PUFA concentrations of C. carpio (effect of selective essential nutrient retention); and, B) increased concentrations of the contaminant MeHg cause increased MeHg concentrations in C. carpio (effect of bioaccumulation). Moreover, it will be examined how higher dietary PUFA concentrations enhance somatic growth of C. carpio. For this effect it is expected that high RNA:DNA ratios relate to higher somatic growth condition, as RNA content is connected with protein synthesis rate and DNA content with cellular multiplication, which provide a general measure of the condition of C. carpio. Results of this project will thus further our understanding on how diet composition improves fish quality. These findings are directly applicable for fish feed producers and fish farmers to further their understanding on how to increase highly desirable PUFA concentrations and to decrease MeHg bioaccumulation in C. carpio. Dietary benefit-risk assessments for PUFA-MeHg profiles will finally lay the groundwork for diet recommendations (desired for preventive medicine). The basic and applicable scientific outcome of this proposal will be greatly enhanced through close collaboration between a fish feed producer (GARANT Austria), the long-standing knowledge of fish farming (Teichwirtschaft T. Kainz; not related to the proposer!), and the scientific expertise of aquatic lipid ecology and ecotoxicology of the principal investigator. Funding: FWF
-
PROFOR: Entwicklung eines Leitfadens für kleine mehrfach belastete Fließgewässer im Weinviertel und in Süd-Mähren zur nachhaltigen Verbesserung der Wasserqualität
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.12.2007 - 31.12.2013
Funding Agency: EU
Project-Leader: Thomas Hein
The aim of the project was the development of a guideline for heavily impacted agricultural low-order streams which contains management measures for a sustainable improvement of the water and sediment quality (with a special focus on nutrients). The guideline is based on investigations about land use, hydromorphology, as well as water, sediment, and soil quality of case studies in the project area. We estimated the potential for improvement via experiments regarding the self-purification capacity of the streams and the nutrient uptake and release by the sediments and determined influencing factors. Funding: EU, Land NÖ, Lebensministerium
-
CANFLOOD - Kohlenstoff- und Stickstoffkreisläufe in Flusslandschaften
Fluvial Biogeochemistry and Ecology (FLUVICHEM, vormals BIGER)
Duration: 01.07.2007 - 31.03.2011
Funding Agency: FWF
Project-Leader: Thomas Hein
River ecosystems play a key role in the transport and transformation of carbon and nutrients. While material is being transported downstream, organic matter is produced and degraded. This matter carries the fingerprint of human activities along its entire course. Microbial community features such as composition and activity are the major biotic component in all processes, especially in nitrogen cycling. Within the riverine landscape these processes are strongly associated with the availability of retention zones such as floodplain, riparian and instream zones. The processes related to nitrogen and organic matter cycling are basically controlled by the hydromorphology. Thus, at the landscape scale, three fundamental principles regulate the cycling and transfer of carbon and nitrogen in river ecosystems: i) The mode of carbon and nitrogen delivery affects ecosystem functioning - connectivity patterns; ii) Increasing contact between water and soil or sediment increases nitrogen retention and processing - geomorphology; iii) Floods and droughts are natural events that strongly influence pathways of carbon and nitrogen cycling. These three principles can be strongly affected either by natural disturbances or anthropogenic impacts, which involve altered water regimes or a change in the geomorphologic setting of the river valley. An altered natural water regime will affect the biogeochemistry of riparian and instream zones as well as their ability to cycle and mitigate nutrient fluxes originating from upstream and upslope. This calls for a more integrated approach including restoration of landscape dynamics and key ecosystem processes such as carbon and nutrient retention. In this context the objectives of our project are i) to understand the consequences of changes in flow regimes on the functioning of river ecosystems and, more specifically, on their nitrogen cycling capacity, and ii) to accurately estimate the rates of these biogeochemical processes under hydrological changes. The following 3 hypotheses based on the 3 above-mentioned fundamental principles are the methodological approach to investigate the regulation of nitrogen and carbon cycling and transfer at the sediment/water interface in retention areas of river ecosystems: H1: The hydromorphic structures of retention areas affect the nitrogen cycling: High surface water connectivity levels and high sediment to water ratios in retention areas increase potential denitrification rates and the N2/N20 ratio. H2: The mode of organic carbon supply to retention areas controls denitrification potential because carbon availability directly affects microbial nitrogen processing at the sediment surface H3: Past water regime patterns control the resistance and the resilience of the nutrient cycling processes to restoration and rehabilitation measures because they have shaped the current geomorphological setting of retention areas at the habitat and at the reach scale. Funding: FWF
-
NETmicroplastic - Tackling the many knowledge gaps concerning microplastic in agricultural soil
Aquatic lipid and ecotoxicology research group (LIPTOX)
Funding Agency: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Die Verschmutzung von Gewässern durch Mikroplastik wurde in den vergangenen Jahren intensiv erforscht, während die Verschmutzung des Bodens durch Mikroplastik, seine Konzentration, seine Verteilung und sein potenzielles Risiko erst in jüngster Zeit größere Aufmerksamkeit erlangt haben. Probenahme, Probenentnahme und quantitative Messungen werden derzeit optimiert und standardisiert. Die Auswirkungen von Mikroplastik auf Boden und Pflanzen sowie die Wechselwirkung von Mikroplastik mit der mikrobiellen Gemeinschaft im Boden und die mikrobiellen Abbauprozesse von Mikroplastik sind noch nicht bekannt. Auf der anderen Seite werden biobasierte Materialien als Alternativen zu herkömmlichen Kunststoffen entwickelt und als sicher und vollständig biologisch abbaubar angepriesen. Es fehlt eine Verbindung zwischen den beiden unterschiedlichen wissenschaftlichen Bereichen, der Polymerchemie und der Materialforschung auf der einen und der Bodenanalyse und Ökologie auf der anderen Seite. NETmicroplastic soll diese noch fragmentierten Forschungs- und Innovationsbereiche zusammenführen und bisher unzureichend vernetzte Akteure aus Politik, Bildung, Verwaltung und Forschung und Entwicklung zusammenbringen, um innovative technologische Lösungen zu unterstützen und die politische Entscheidungsfindung zu fördern, um der Kunststoffverschmutzung in Böden und terrestrischer Umwelt entgegenzuwirken. Dies wird zweifellos zu einem tieferen Verständnis von Mikroplastik in landwirtschaftlich genutzten Böden, zur Generierung wissenschaftlicher und evidenzbasierter Wirkungsdaten und zur Formulierung neuartiger Bodenbewirtschaftungspraktiken zum Schutz und zur Verbesserung der Böden für eine nachhaltigere Landwirtschaft führen.